首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Neodymium-doped aluminum oxide films with a range of Nd3+ concentrations are deposited on silicon wafers by reactive co-sputtering, and single-mode channel waveguides with various lengths are fabricated by reactive ion etching. Photoluminescence at 880, 1060, and 1330 nm from the Nd3+ ions with a lifetime of 325 μs is observed. Internal net gain at 845–945 nm, 1064, and 1330 nm is experimentally and theoretically investigated under continuous-wave excitation at 802 nm. Net optical gain of 6.3 dB/cm at 1064 nm and 1.93 dB/cm at 1330 nm is obtained in a 1.4-cm-long waveguide with a Nd3+ concentration of 1.68×1020 cm?3 when launching 45 mW of pump power. In longer waveguides a maximum gain of 14.4 dB and 5.1 dB is obtained at these wavelengths, respectively. Net optical gain is also observed in the range 865–930 nm and a peak gain of 1.57 dB/cm in a short and 3.0 dB in a 4.1-cm-long waveguide is obtained at 880 nm with a Nd3+ concentration of 0.65×1020 cm?3. By use of a rate-equation model, the gain on these three transitions is calculated, and the macroscopic parameter of energy-transfer upconversion as a function of Nd3+ concentration is derived. The high internal net gain indicates that Al2O3:Nd3+ channel waveguide amplifiers are suitable for providing gain in many integrated optical devices.  相似文献   

2.
Photoluminescence (PL) with the bandwidth of 45 nm (1523-1568 nm at the level of 3 dB) was observed in amorphous Er2O3 films grown on to the quartz substrate by pulsed laser ablation of erbium oxide stoichiometric target. Optical transmission spectrum has been fitted to Swanepoel formula to determine the dispersion of refractive index and to extract resonance absorption peaks at 980 and 1535 nm. The maximum gain coefficient of 800 dB/cm at 1535 nm was estimated using McCumber theory and experimental spectrum of the resonance absorption. In 5.7 mm-long waveguide amplifier a theory predicts the spectral gain of 20 dB with 1.4 dB peak-to-peak flatness in the bandwidth of 31 nm (1532-1563 nm) when 73% of Er3+ ions are excited from the ground state to the 4I13/2 laser level. Strong broadband PL at room temperature and inherently flat spectral gain promise Er2O3 films for ultra-short high-gain optical waveguide amplifiers and integrated light circuits.  相似文献   

3.
A thin-film optical waveguide using a fluorinated silicon oxide (SiOF) as a core layer was investigated. An organic spin-on-glass (SOG) film was used for a cladding layer. The SiOF films were formed at 23°C by a liquid-phase deposition (LPD) technique using a supersaturated hydrofluosilicic acid (H2SiF6) aqueous solution. A thin-film optical waveguide structure for single mode was designed and fabricated, based on the dispersion properties of refractive indices for the LPD-SiOF and organic SOG films. The refractive indices at a wavelength of 632.8 nm were 1.430 and around 1.400 for the LPD-SiOF and organic SOG films, respectively. The thickness of LPD-SiOF films deposited was 1.18 μm. Thicknesses of cladding organic SOG films cured at 300 and 400°C were 1.28 and 1.31μm, respectively. The effective refractive indices for single mode were 1.4169 and 1.4158 at a wavelength of 632.8 nm for the cladding organic SOG films cured at 300 and 400°C, respectively, and differences between the measured and calculated incident angles were 0.84° and 1.29° for the cladding organic SOG films cured at these respective temperatures. A streak of guided-light was observed for the LPD-SiOF/SOG structure optical waveguide. The transmission loss was 7.6-7.9 dB/cm.  相似文献   

4.
Li  S.F.  Song  C.L.  Xiong  Q.J.  Ran  B. 《Optical and Quantum Electronics》2002,34(9):859-866
The gain characteristics of erbium-doped Al2O3 waveguide amplifiers are investigated by solving numerically rate equations with upconversion effects and propagation equations. We obtained the dependence of gain of erbium-doped Al2O3 waveguide amplifiers on the waveguide length, erbium concentration and pump power at different pumping wavelengths (980 and 1480 nm). The performance of amplifiers pumping at 1480 and 980 nm are compared. It is shown that 980 nm pumping has higher gain and higher pumping efficiency. The parameters of waveguide amplifiers have been optimized. A optical gain of 43 dB can be achieved for a optimum waveguide length of 8.25 cm and 5.8 × 1020 cm–3 Er concentration pumped with 100 mW at 980 nm, that is a gain of 5.2 dB/cm.  相似文献   

5.
A Nd:YAG laser operating at the fundamental wavelength (1064 nm) and at the second harmonic (532 nm), with 9 ns pulse duration, 100–900 mJ pulse energy, and 30 Hz repetition rate mode, was employed to ablate in vacuum (10?6 mbar) biomaterial targets and to deposit thin films on substrate backings. Titanium target was ablated at the fundamental frequency and deposited on near-Si substrates. The ablation yield increases with the laser fluence and at 40 J/cm 2 the ablation yield for titanium is 1.2×1016 atoms/pulse. Thin film of titanium was deposited on silicon substrates placed at different distance and angles with respect to the target and analysed with different surface techniques (optical microscopy, scanning electron spectrosopy (SEM), and surface profile).

Hydroxyapatite (HA) target was ablated to the second harmonic and thin films were deposited on Ti and Si substrates. The ablation yield at a laser fluence of 10 J/cm 2 is about 5×1014 HA molecules/pulse. Thin film of HA, deposited on silicon substrates placed at different distance and angles with respect to the target, was analysed with different surface techniques (optical microscopy, SEM, and Raman spectroscopy).

Metallic films show high uniformity and absence of grains, whereas the bio-ceramic film shows a large grain size distribution. Both films found special application in the field of biomaterial coverage.  相似文献   

6.
The optimization of erbium-doped Ta2O5 thin film waveguides deposited by magnetron sputtering onto thermally oxidized silicon wafer is described. Optical constants of the film were determined by ellipsometry. For the slab waveguides, background losses below 0.4 dB/cm at 633 nm have been obtained before post-annealing. The samples, when pumped at 980 nm yielded a broad photoluminescence spectrum (FWHM∼50 nm) centred at 1534 nm, corresponding to 4I13/2-4I15/2 transition of Er3+ ion. The samples were annealed up to 600 °C and both photoluminescence power and fluorescence lifetime increase with post-annealing temperature and a fluorescence lifetime of 2.4 ms was achieved, yielding promising results for compact waveguide amplifiers.  相似文献   

7.
Bi3TiNbO9:Er3+:Yb3+ (BTNEY) thin films were fabricated on fused silica by pulsed laser deposition. It was demonstrated that different laser fluence and substrate temperature during growth of BTNEY upconversion photoluminescence (UC-PL) samples control the film’s grain size and hence influences the UC-PL properties. The average grain size of BTNEY thin films deposited on fused silica substrates with laser fluence 4, 5, 6, and 7 J/cm2 are 30.8, 35.9, 40.6, and 43.4 nm, respectively. The 525 nm emission intensities increase with the deposition laser fluence and the emission intensities of BTNEY thin film deposited under 700 and 600 °C are almost 24 and 4 times, respectively, as strong as those of samples under 500 °C. The grain size of BTNEY thin film increases with the increasing temperature. UC-PL of BTNEY films is enhanced by increasing grain size of the films.  相似文献   

8.
Thin-film Nd-doped potassium gadolinium tungstate (Nd:KGW or KGd(WO4)2) waveguides are deposited on (1102)sapphire or (100)YAG substrates by KrF laser ablation of potassium-rich ceramic targets in Ar and O2. The dependence of the stoichiometry, crystallinity and waveguide properties of the films on the environmental gas pressure and substrate temperature is studied. Highly textured crystalline (110) KGW films are grown. An optical waveguide loss as low as 3 dB/cm is obtained for the films grown in Ar. The as-grown films are optically active. Upon annealing at 900 °C in air, the crystallinity and the properties of the emission spectra are dramatically improved. PACS 81.15.Fg; 42.70.Hj; 78.20.Ek  相似文献   

9.
Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence and at high substrate temperatures, the specific resistivity of the films, 2–3×10-4 Ω cm, is comparable to values obtained with excimer lasers, whereas the resistivities obtained at room temperature are somewhat higher than those of films produced by excimer lasers. The transmission coefficient of visible light, about 0.9, is also comparable to values for films deposited by excimer lasers. The crystalline structure of films produced at 355 nm is similar to that of samples produced by these lasers. Received: 16 January 2001 / Accepted: 24 July 2001 / Published online: 17 October 2001  相似文献   

10.
J.Y. Lee 《Optics Communications》2009,282(12):2362-3085
Sn doped In2O3 (ITO) single layer and a sandwich structure of ITO/metal/ITO (IMI) multilayer films were deposited on a polycarbonate substrate using radio-frequency and direct-current magnetron sputtering process without substrate heating. The intermediated metal films in the IMI structure were Au and Cu films and the thickness of each layer in the IMI films was kept constant at 50 nm/10 nm/40 nm. In this study, the ITO/Au/ITO films show the lowest resistivity of 5.6 × 10−5 Ω cm.However the films show the lower optical transmission of 71% at 550 nm than that (81%) of as deposited ITO films. The ITO/Cu/ITO films show an optical transmittance of 54% and electrical resistivity of 1.5 × 10−4 Ω cm. Only the ITO/Au/ITO films showed the diffraction peaks in the XRD pattern. The figure of merit indicated that the ITO/Au/ITO films performed better in a transparent conducting electrode than in ITO single layer films and ITO/Cu/ITO films.  相似文献   

11.
A thermo-optic switch in a thin-film optical waveguide was investigated. Fluorinated silicon oxide (SiOF) and organic spin-on-glass (SOG) films were used as core-layer and clad-layer, respectively, in the waveguide structure. The SiOF films were formed at 23#x00B0;C by a liquid-phase deposition (LPD) technique using a supersaturated hydrofluosilicic acid (H2SiF6) aqueous solution. Thermal coefficients of the refractive indices for LPD-SiOF and organic SOG films formed on silicon (Si) substrates were #x2212;4.0 #x00D7; 10#x2212;6/#x00B0;C, #x2212;60 #x00D7; 10#x2212;6/#x00B0;C at the wavelength of 632.8 nm, respectively. A high extinction ratio of 15 dB was obtained for this switch at the applied voltage of 12.8 V.  相似文献   

12.
Thin Er3+, Yb3+ co-doped Y2O3 films were grown on (1 0 0) YAG substrates by pulsed laser deposition. Ceramic targets having different active ion concentration were used for ablation. The influence of the rare-earth content and oxygen pressure applied during the deposition on the structural, morphological and optical properties of the films were investigated. The films deposited at the lower pressure, 1 Pa, and at 1/10 Er to Yb doping ratio are highly textured along the (1 1 1) direction of the Y2O3 cubic phase. In addition to the crystalline structure, these films possess smoother surface compared to those prepared at the higher pressure, 10 Pa. All other films are polycrystalline, consisting of cubic and monoclinic phases of Y2O3. The rougher surface of the films produced at the higher-pressure leads to higher scattering losses and different behavior of the reflectivity spectra. Optical anisotropy in the films of less than 0.004 was measured regardless of the monoclinic structure obtained. Waveguide losses of about 1 dB/cm at 633 nm were obtained for the films produced at the lower oxygen pressure.  相似文献   

13.
Fluorocarbon films were deposited by soft X-ray ablation of polytetrafluoroethylene (PTFE) and characterized as low-dielectric-constant interlayer dielectrics. Very rapid deposition of such films at approximately 1500 nm/min could be achieved at room temperature. Fourier-transform infrared spectroscopy (FT-IR) measurement results suggest that the films deposited are primarily formed as one-dimensional chains of (-CF2-)n which are partially cross-linked. The cross-link density increases with increasing deposition temperature, which improves the thermal stability. However, the dielectric constant of the films increased abruptly above 300 °C. The dielectric constant and leakage current at 1.0 MV/cm of the film deposited at room temperature were approximately 2.1 and 2.0×10−9 A/cm2, respectively.  相似文献   

14.
Crystalline Pr3+ doped Gd3Ga5O12 (Pr:GGG) thin films were grown by pulsed laser deposition (PLD) on yttrium aluminium garnet (YAG) substrates. The chemical composition and structural properties of the films were studied using Rutherford backscattering and X-ray diffraction, respectively. A strong influence of the oxygen pressure on the gallium content in the films as well as in the target surface was found. Films deposited at lower temperature or lower oxygen pressure are amorphous or Ga deficient. Well crystallised and stoichiometric GGG films were fabricated at 800 °C in the 5 to 10 Pa oxygen pressure range. These films present blue, orange and red fluorescence emissions from 3P0 and 1D2 levels of Pr3+ ions and fluorescence decay times which are similar to those of the bulk single crystal. Their refractive index of 1.964 close to the bulk crystal value and their waveguiding propagation attenuation of 1.0±0.3 dB/cm measured at 632.8 nm wavelength indicate promising waveguiding properties. PACS 81.15 Fg; 78.55 Hx; 68.55 a  相似文献   

15.
La0.8Sr0.2MnO3 (LSMO) films were prepared on LaAlO3 substrates by excimer laser metal organic deposition (ELMOD) at 500 °C. The temperature dependence of resistance of the LSMO films was investigated by changing the laser fluence, irradiation time, and film thickness. It was found that the resistance of the LSMO films 80 nm in thickness that were irradiated by an ArF laser at a fluence of 100 mJ/cm2 for 60 min showed a metallic temperature dependence, and the maximum temperature coefficient of resistance of the films (defined as 1/R×dR/dT) was 3.4% at 265 K. PACS 81.15.-z; 81.15.Fg; 81.15.Np; 73.61.-r; 71.30.+h  相似文献   

16.
《Current Applied Physics》2015,15(7):794-798
We have studied the electrical and optical properties of Si-doped indium tin oxides (ITSOs) as transparent electrodes and anti-reflection coatings for Si-based solar cells. The ITSO thin films were obtained by co-sputtering of ITO and SiO2 targets under target power control. The resistivity of the ITSO thin films deposited at 0.625 in terms of power ratio (ITO/SiO2) were 391 Ωcm. In this condition, the ITSO thin films showed very high resistivity compared to sputted pure ITO thin films (1.08 × 10−3 Ωcm). However, refractive index of ITSO thin films deposited at the same condition at 500 nm is somewhat lowered to 1.97 compared to ITO thin films (2.06). The fabricated graded refractive index AR coatings using ITO, ITSO, and SiO2 thin films kept over 80% of transmittance regardless of their thickness varing from 97 nm to 1196 nm because of their low extinction coefficient. As the AR coating with graded refractive indices using ITO, ITSO, and SiO2 layers was applied to general silicon-based solar cell, the current level increased nearly twice more than that of bare silicon solar cell without AR coating.  相似文献   

17.
Thin chromium films, 60 nm thick, were deposited onto single-crystal silicon wafers. The samples were irradiated with 30 ns single pulses from a Nd: glass laser at fluences ranging from 0.4 to 2.25 J/cm2. Rutherford backscattering spectrometry, transmission electron microscopy and electron diffraction measurements evidence the formation of CrSi2 layers at the Cr/Si interface. The silicide thickness depends on the laser fluence.  相似文献   

18.
We report the preparation of multiferroic BiFeO3 thin films on ITO coated glass substrates through sol-gel spin coating method followed by thermal annealing and their modification by swift heavy ion (SHI) irradiation. X-ray diffraction and Raman spectroscopy studies revealed amorphous nature of the as deposited films. Rhombohedral crystalline phase of BiFeO3 evolved on annealing the films at 550°C. Both XRD and Raman studies indicated that SHI irradiation by 200 MeV Au ions result in fragmentation of particles and progressive amorphization with increasing irradiation fluence. The average crystallite size estimated from the XRD line width decreased from 38 nm in pristine sample annealed at 550°C to 29 nm on irradiating these films by 200 MeV Au ions at 1 × 1011 ions cm−2. Complete amorphization of the rhombohedral BiFeO3 phase occurs at a fluence of 1 × 1012 ions.cm−2. Irradiation by another ion (200 MeV Ag) had the similar effect. For both the ions, the electronic energy loss exceeds the threshold electronic energy loss for creation of amorphized latent tracks in BiFeO3.  相似文献   

19.
Vanadium dioxide thin films have been deposited on Corning glass substrates by a KrF laser ablation of V2O5 target at the laser fluence of 2 J?cm?2. The substrate temperature and the target-substrate distance were set to 500 °C and 4 cm, respectively. X-ray diffraction analysis showed that pure VO2 is only obtained at an oxygen pressure range of 4×10?3–2×10?2 mbar. A higher optical switching contrast was obtained for the VO2 films deposited at 4×10?3–10?2 mbar. The films properties were correlated to the plume-oxygen gas interaction monitored by fast imaging of the plume.  相似文献   

20.
The patterning of lanthanum-doped lead zirconate titanate (PLZT) and strontium-doped lead zirconate titanate (PSZT) thin films has been examined using a 5-ns pulsed excimer laser. Both types of film were deposited by rf magnetron sputtering with in situ heating and a controlled cooling rate in order to obtain the perovskite-structured films. The depth of laser ablation in both PSZT and PLZT films showed a logarithmic dependence on fluence. The ablation rate of PLZT films was slightly higher than that of PSZT films over the range of fluence (10–150 J/cm2) and increased linearly with number of pulses. The threshold fluence required to initiate ablation was ∼ 1.25 J/cm2 for PLZT and ∼ 1.87 J/cm2 for PSZT films. Individual squares were patterned with areas ranging from 10×10 μm2 up to 30×30 μm2 using single and multiple pulses. The morphology of the etched surfaces comprised globules which had diameters of 200–250 nm in PLZT and 1400 nm in PSZT films. The diameter of the globules has been shown to increase with fluence until reaching an approximately constant size at ≤ 20 J/cm2 in both types of film. The composition of the films following ablation has been compared using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. PACS 79.20.Ds; 82.80.Pv; 82.80.Ej  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号