首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to better understand the permeation properties of polydimethylsiloxane (PDMS) membranes. The compressibility and nanofiltration fluxes were measured for swollen PDMS films using several solvents at applied pressures ranging from 5 to 50 bar. The degree of swelling varied according to the solvent and the pressure applied. To show the correlation between the behaviour of the swollen PDMS under pressure and its permeation performance, the thickness reduction of the membrane was mimicked using uniaxial compression tests. The evolution of the nanofiltration flux as a function of the transmembrane pressure proved to be non-linear. Linearization was achieved by taking into account both the swelling and the thickness reduction previously measured, confirming that these phenomena may have occurred during the nanofiltration experiments. Moreover, the solvents' viscosity and affinity for the polymer were confirmed to have a great influence on their ability to permeate the membrane. Finally, employing the most commonly used models, a study of transport through the membrane led to the conclusion that the experimental results were in agreement with the hydraulic theory of transport.  相似文献   

2.
The effect of gel layer thickness on salt separation of positively charged pore-filled nanofiltration membranes has been examined both theoretically and experimentally. The extended Nernst-Planck (ENP) equation coupled with the Teorell-Meyer-Sievers (TMS) model were used to calculate the pressure-driven sodium chloride rejections for membranes having gel densities in the range typically used in nanofiltration applications. It was found that salt rejection was dependent on membrane (gel-layer) thickness with salt rejections increasing rapidly with thickness up to 50–75 μm. Further increases in thickness beyond this point had a much smaller effect on salt rejection. The theoretical predictions were examined experimentally by preparing a series of membranes with cross-linked poly(3-acrylamidopropyl)-trimethylammonium chloride (PAPTAC) gels with varying densities within the pores of a thin microporous polyethylene (PE) support. The membranes were characterized by their polymer volume fractions (gel concentration), thicknesses and effective charge densities. The effect of membrane thickness was examined by using single and stacks of two membranes. The pure water fluxes and salt rejections of the membranes and membrane stacks were determined in the pressure range 50–550 kPa. The single salt rejections of the membranes which were very dependent on the thickness of the membrane or membrane stack, were fully in accord with the calculated salt rejections of the membranes.  相似文献   

3.
Blend membranes of poly(vinyl alcohol) (PVA) and nylon 66 (NYL) were synthesized and crosslinked with glutaraldehyde (GA) and assessed for their suitability in dehydrating 2-butanol by pervaporation (PV). These blends were subjected to sorption studies to determine the extent of interaction and degree of swelling in pure liquids as well as binary mixtures. Wide-angle X-ray diffraction (WAXD) and thermal gravimetric analysis (TGA) were carried out to investigate changes in crystallinity and thermal stability, respectively. The effect of experimental parameters such as feed water concentration, permeate pressure and barrier thickness on membrane flux and selectivity was evaluated. The membranes were found to have good potential for breaking the azeotrope of 27.6 wt.% water with a flux of 3.07 kg/m2 h 10 μm and selectivity of 26.5. Selectivity was found to improve with decreasing feed water concentration and increasing membrane thickness, whereas opposite trends were observed in case of flux. Higher permeate pressure caused a reduction in both flux and selectivity. These effects were clearly elucidated.  相似文献   

4.
Polymer blends based on sulfonated poly(ether ketone ketone) (SPEKK) as the proton-conducting component and poly(ether imide) (PEI) as the second component were considered for proton-exchange membranes (PEMs). The PEI was added to improve the mechanical stability and lower the water swelling in the fuel cell environment. Membranes were cast from solution using N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc). The ternary, polymer/polymer/solvent, phase diagram was determined to provide guidance on how to control the morphology during solvent casting of blend membranes.

For blends of SPEKK (ion-exchange capacity = 2 mequiv/g) with PEI as the minority component, the morphology consisted of dispersed particles of 0.5–6 μm. Larger particles were achieved by increasing the PEI content and/or lowering the casting temperature. High-temperature annealing after solution casting did not affect the morphology of blend membranes, due to the low mobility and compatibility of the two polymers.

The possible use of SPEKK/PEI blends in PEMs is discussed in terms of existing theories of ion transport in polymers.  相似文献   


5.
Dense ceramic mixed ionic and electronic conducting membranes have been deposited by atmospheric spray-pyrolysis technique onto porous ceramic substrates. Perovskite oxide layers, i.e. manganites La1−xSrxMnO3, ferrites La1−xSrxFe1−y(Co,Ni)yO3, gallates La1−xSrxGa1−y(Co,Ni,Fe)yO3, cobaltites La1−xSrxCoO3 and related perovskites such as lanthanum nickelate La2NiO4 layers have been prepared. The structure, morphology and composition of the layers were characterised by XRD, SEM and WDS, respectively. Density and gas tightness of the layers were studied as a function of deposition process parameters, film thickness (from 0.5 to 3 μm) and preparation procedure. The presence of cracks and defects due to thermo-mechanical stresses applied during or after the preparation process were correlated with the membrane composition and the corresponding thermal expansion coefficient differences between substrates and membranes.  相似文献   

6.
In situ non-invasive 3D characterization of membrane fouling was achieved using femtosecond near infrared non-linear optical imaging together with a novel crossflow filtration module. Washed fluorophore-labelled yeast suspensions were filtered through Millipore 0.22 μm mixed cellulose ester membranes and the fouling layer was imaged at different times throughout the experiment.

Based on the 3D femtosecond images, it has been possible to identify fine structural features of the cake and to measure the thickness of the filter cake formed on the microfiltration (MF) membranes. Our findings reveal that low concentration feeds result in the initial formation of a patchy monolayer of cells leading to a multilayered cake, whilst at higher concentrations a multilayer cake forms rapidly. For patchy cakes, the technique offers greater resolution than that which is achievable with the direct observation through membrane technique. Deposited cell aggregates and broken fragments of cells can clearly be imaged. For thick cakes, it has been possible to image up to depths 45 μm below the cake surface in the present work.  相似文献   


7.
New types of supported Pd membranes were developed for high temperature H2 separation. Sequential combinations of boehmite sol slip casting and film coating, and electroless plating (ELP) steps were designed to synthesize “Pd encapsulated” and “Pd nanopore” membranes supported on -Al2O3 hollow fibers. The permeation characteristics (flux, permselectivity) of a series of unaged and aged encapsulated and nanopore membranes with different Pd loadings were compared to those of a conventional 1 μm Pd/4 μm γ-Al2O3/-Al2O3 hollow fiber membrane. The unaged encapsulated membrane exhibited good performance with ideal H2/N2 separation factors of 3000–8000 and H2 flux 0.4 mol/m2 s at 370 °C and a transmembrane pressure gradient of 4 × 105 Pa. The unaged Pd nanopore membranes had a lower initial flux and permselectivity, but exhibited superior performance with extended use (200 h). At the same conditions the unaged 2.6 μm Pd nanopore membrane had a H2 flux of 0.16 mol/m2 s and separation factor of 500 and the unaged 0.6 μm Pd nanopore membrane had a H2 flux of 0.25 mol/m2 s and separation factor of 50. Both nanopore membranes stabilized after 40 h of operation, in contrast to a continued deterioration of the permselectivity for the other membranes. An analysis of the permeation data reveals a combination of Knudsen and convective transport through membrane defects. A phenomenological, qualitative model of the synthesis and resulting structure of the encapsulated and nanopore membranes is presented to explain the permeation results.  相似文献   

8.
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations.  相似文献   

9.
A novel method for fabricating micrometer sized gel patterns is described. The presented method involves spin-coating a pre-gel solution on a surface that was chemically treated to modulate its surface energy, creating highly hydrophobic areas on a hydrophilic substrate. Following spin-coating, the gel solution self organizes on the hydrophilic sites. This method offers the advantages of high resolution, self-alignment to pre-patterned electrodes, and a simple straightforward fabrication process. Minimum feature size achieved was approximately 20 μm. The characteristic shrinking and swelling times of gel patterns were measured and found to be around 0.6 s for swelling and 2 s for shrinking (for a 60 μm diameter gel) in agreement with the reduced response time expected for scaled down gel patterns. These results suggest the suitability of these gel patterns as valves or actuators in microfluidic devices. Micron-size gel patterns were also incorporated into microfluidic channels thus demonstrating a new approach to create simple, affordable, microfluidic devices, which incorporate “smart” hydrogels as building elements in a simple fashion.  相似文献   

10.
A novel procedure for solid-phase microextraction fiber preparation is presented, which combines the use of a rigid titanium alloy wire as a substrate with a blend of PDMS sol–gel mixture/silica particles, as a way of increasing both the mechanical robustness and the extracting capability of the sol–gel fibers. The 30 μm average thick fibers displayed an improvement in the extraction capacity as compared to the previous sol–gel PDMS fibers, due to a greater load of stable covalently bonded sol–gel PDMS. The observed extraction capacity was comparable to that of 100 μm non-bonded PDMS fiber, having in this case the advantages of the superior robustness and stability conferred, respectively, by the unbreakable substrate and the sol–gel intrinsic characteristics. Repeatability (n = 3) ranged 1–8% while fiber production reproducibility (n = 3) ranged 15–25%. The presence of the silica particles was found to have no direct influence on the kinetics and mechanism of the extraction process, thus being possible to consider the new procedure as a refinement of the previous ones. The applicability potential of the devised fiber was illustrated with the analysis of gasoline under the context of arson samples.  相似文献   

11.
The aroma profile of cocoa products was investigated by headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS). SPME fibers coated with 100 μm polydimethylsiloxane coating (PDMS), 65 μm polydimethylsiloxane/divinylbenzene coating (PDMS-DVB), 75 μm carboxen/polydimethylsiloxane coating (CAR-PDMS) and 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane on a StableFlex fiber (DVB/CAR-PDMS) were evaluated. Several extraction times and temperature conditions were also tested to achieve optimum recovery. Suspensions of the samples in distilled water or in brine (25% NaCl in distilled water) were investigated to examine their effect on the composition of the headspace. The SPME fiber coated with 50/30 μm DVB/CAR-PDMS afforded the highest extraction efficiency, particularly when the samples were extracted at 60 °C for 15 min under dry conditions with toluene as an internal standard. Forty-five compounds were extracted and tentatively identified, most of which have previously been reported as odor-active compounds. The method developed allows sensitive and representative analysis of cocoa products with high reproducibility. Further research is ongoing to study chocolate making processes using this method for the quantitative analysis of volatile compounds contributing to the flavor/odor profile.  相似文献   

12.
13.
The use of solvent resistant nanofiltration (SRNF) provides an elegant alternative to the classical heterogenization of homogeneous catalysts. The SRNF-membrane separates the catalyst from the reaction mixture and allows products and solvent to permeate. This concept is now applied to the Co-Jacobsen catalyst in the hydrolytic kinetic resolution (HKR) of epoxides. A range of commercially available NF-membranes and three laboratory prepared membranes were subjected to filtration tests in diethylether, isopropanol and under solvent-free conditions. The membranes with the best performance were selected to recycle the Co-Jacobsen catalyst under catalytic conditions. Finally, the membrane reactor developed for the IPA-system, was optimized through the screening of different process parameters, including temperature, pressure and membrane thickness.  相似文献   

14.
A synchrotron microprobe has been used to characterize ion implantations of nickel and cobalt in silicon (100) or (111) wafers. The synchrotron radiation is collimated by means of a rigid cylindrical glass capillary of 110 mm length, 5 mm outer and 30 μm or 10 μm inner diameter. The beam is pointed at the wafer sample and the emitted radiation of X-rays is detected by an energy dispersive spectrometer. Line scans are recorded step by step over the implantation areas and across their borders. The sharpness of the borders is characterized at a lateral resolution of 13 μm and the edge lengths ranging from 0.6 to 8 mm are determined with an accuracy better than ± 20 μm. The signal intensity and implantation dose of cobalt ranging from 1 × 1015 to 1 × 1017 ions cm−2 show a linear relationship as is to be expected for the micrometre thin implanted layers.  相似文献   

15.
When GaAs–Si and GaAs–AlGaAs heterostructures are exposed to γ-quanta, radiation stimulated ordering is observed. However, the gettering efficiency in such systems falls for layer widths more than 1 μm. For this reason we seek effective methods of radiation resistance improvement of materials in which one would expect point radiation defects to be gettered not only at defect boundaries, but also in the active layer volume.

S.i.GaAs–s.i.AlxGa1−xAs–nGaAs : Te heterostructures are presented with epitaxial layers (doped with Yb or undoped), obtained by means of LPE (liquid-phase epitaxy). The electron concentration in nGaAs was found to be (1–3)×1018 cm−3 for widths 1–3 μm. The samples were exposed to 60Co γ-quanta with doses of 105–107 rad.

Investigations of irradiated samples by means of low-temperature (4.2 K) photoluminescence have shown considerable decrease of exciton halfwidth in the boundary spectra of nGaAs : Te : Yb epitaxial layers in comparison with nGaAs : Te layer spectra. This is caused by background impurity gettering which happens on the s.i.AlxGa1−xAs–nGaAs heteroboundaries as well as in deformed regions in the epitaxial layer volume. Formation of such regions is caused by the difference between the covalent radii of Yb atoms and GaAs lattice atoms. The maximum effect of radiation stimulated gettering of dopants in nGaAs epitaxial layers is observed for Yb concentrations which are equal to 10−4–10−5 atomic fractions in a solution-melt.

It is determined that the deformed regions in epitaxial layer volumes and heteroboundaries could be efficient drains for point radiation defects which form under radiation exposure. The investigations carried out showed that the doping of an epitaxial layers by rare-earth impurities provides considerable improvement in forming radiation resistant III–V materials.  相似文献   


16.
A pinhole-free palladium membrane with a thickness of 3 μm has been prepared on the surface of a porous sintered stainless steel tube coated with a thin silver layer as a diffusion barrier. Filling of aluminum hydroxide gel in the surface pores of the tube is effective in preventing defect formation during electroless plating of the palladium layer, while the volume of the hydroxide beneath the membrane decreases greatly upon thermal treatment up to 500 °C. The hydrogen flux at 400–500 °C is reasonably proportional to the pressure difference between the two sides of the membrane. Addition of a 2 μm Pd0.8Ag0.2 alloy layer on the membrane by electroplating does not greatly decrease the hydrogen permeability.  相似文献   

17.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

18.
Biogenic amines are present in some fermented and non-fermented beverages and can cause diseases. This study analyzes the feasibility of separating biogenic amines by nanofiltration in acidic medium. Solutions of chloride salts of three biogenic amines: putrescine, histamine and tyramine were filtered through a nanofiltration membrane with a 1000 Da molecular weight cut-off (MWCO) and a positive electrical charge at pH 3. Increasing the transmembrane pressure or cross flow velocity led to an increase in solute rejection and permeate flow. Moreover, a higher electrical charge or lower concentration of amine cations caused a larger rejection indicating that membrane-solutes repulsion governs the filtration process. Finally, the experimental results were analyzed using the classic Donnan–Steric pore model. Values of 0.83 nm and 5.4 μm were estimated for pore radius and membrane effective ratio thickness-porosity from the filtration of neutral solutes. Membrane volumetric charge density and the proton diffusivity inside the pores were estimated from the experimental results.  相似文献   

19.
Khajeh M  Yamini Y  Hassan J 《Talanta》2006,69(5):1088-1094
In the present work, a rapid method for the extraction and determination of chlorobenzenes (CBs) such as monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene in water samples using the headspace solvent microextraction (HSME) and gas chromatography/electron capture detector (ECD) has been described. A microdrop of the dodecane containing monobromobenzene (internal standard) was used as extracting solvent in this investigation. The analytes were extracted by suspending a 2.5 μl extraction drop directly from the tip of a microsyringe fixed above an extraction vial with a septum in a way that the needle passed through the septum and the needle tip appeared above the surface of the solution. After the extraction was finished, the drop was retracted back into the needle and injected directly into a GC column. Optimization of experimental conditions such as nature of the extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, the ionic strength and extraction time were investigated. The optimized conditions were as follows: dodecane as the extracting solvent, the extraction temperature, 45 °C; the sodium chloride concentration, 2 M; the extraction time, 5.0 min; the stirring rate, 500 rpm; the drop volume, 2.5 μl; the sample volume, 7 ml; the microsyringe needle temperature, 0.0 °C. The limit of detection (LOD) ranged from 0.1 μg/l (for 1,3-dichlorobenzene) to 3.0 μg/l (for 1,4-dichlorobenzene) and linear range of 0.5–3.0 μg/l for 1,2-dichlorobenzene, 1,3-dichlorobenzene and from 5.0 to 20.0 μg/l for monochlorobenzene and from 5.0 to 30 μg/l for 1,4-dichlorobenzene. The relative standard deviations (R.S.D.) for most of CBs at the 5 μg/l level were below 10%. The optimized procedure was successfully applied to the extraction and determination of CBs in different water samples.  相似文献   

20.
Homogeneous membranes were prepared by casting the solution of blended chitosan and polyvinyl alcohol (PVA) on a glass plate. The percent weight of chitosan in the membrane was varied from 0 to 100%. The membrane thickness was in the range of 15–30 μm. The membranes were heat treated at 150 °C for an hour. After that the membranes were crosslinked by glutaraldehyde and sulfuric acid in acetone aqueous solution. The membranes were tested at 30–60 °C for dehydration performance of 50–95% isopropanol aqueous solutions. At around 90% of isopropanol in the feed mixture, permeate flux increased whereas the percent of water in permeate tended to decrease when the feed temperature increased for all membranes, except that the water content in permeate from the membrane containing 75 wt.% chitosan remained constant. The swelling degree in water and the total flux increased with increasing chitosan content in membranes. The effect of temperature on permeate flux followed the Arrhenius relationship. The permeate flux decreased when isopropanol in the feed increased for all membranes. However, water content in permeate and isopropanol concentration in the feed formed complex relationship for different chitosan content membranes. Sorption did not appear to have significant effects on separation. The membrane containing chitosan 75% performed the best. For a feed solution containing 90% isopropanol at 60 °C, the permeate flux was 644 g/m2 h with water content of nearly 100% in the permeate. At 55% isopropanol in the feed at 60 °C, the permeate flux was 3812 g/m2 h. In the range of 55–95% of isopropanol in the feed, the water content in permeate was more than 99.5%. This membrane showed very excellent performance with good mechanical strength. It is promising to develop this membrane for industrial uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号