首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and rapid method is developed for extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. The procedure was based on the microwave-assisted extraction of PAHs in marine sediment samples using a micellar medium of Polyoxyethylene 10 lauryl ether as extractant. Two-level factorial designs have been used to optimize the microwave extraction process. The analysis of extracts has been carried out by HPLC with UV detection. Fortified sediments gave an average recovery between 85.70 and 100.73%, with a relative standard deviation of 1.77-7.0% for PAHs with a ring number higher than three.  相似文献   

2.
Microwave energy was applied to extract polycyclic aromatic hydrocarbons (PAHs) and linear aliphatic hydrocarbons (LAHs) from marine sediments. The influence of experimental conditions, such as different extracting solvents and mixtures, microwave power, irradiation time and number of samples extracted per run has been tested using real marine sediment samples; volume of the solvent, sample quantity and matrix effects were also evaluated. The yield of extracted compounds obtained by microwave irradiation was compared with that obtained using the traditional Soxhlet extraction. The best results were achieved with a mixture of acetone and hexane (1:1), and recoveries ranged from 92 to 106%. The extraction time is dependent on the irradiation power and the number of samples extracted per run, so when the irradiation power was set to 500 W, the extraction times varied from 6 min for 1 sample to 18 min for 8 samples. Analytical determinations were carried out by high-performance liquid chromatography (HPLC) with an ultraviolet-visible photodiode-array detector for PAHs and gas chromatography (GC) using a FID detector for LAHs. To test the accuracy of the microwave-assisted extraction (MAE) technique, optimized methodology was applied to the analysis of standard reference material (SRM 1941), obtaining acceptable results.  相似文献   

3.
Microwave energy was applied to extract polycyclic aromatic hydrocarbons (PAHs) and linear aliphatic hydrocarbons (LAHs) from marine sediments. The influence of experimental conditions, such as different extracting solvents and mixtures, microwave power, irradiation time and number of samples extracted per run has been tested using real marine sediment samples; volume of the solvent, sample quantity and matrix effects were also evaluated. The yield of extracted compounds obtained by microwave irradiation was compared with that obtained using the traditional Soxhlet extraction. The best results were achieved with a mixture of acetone and hexane ¶(1?:?1), and recoveries ranged from 92 to 106%. The extraction time is dependent on the irradiation power and the number of samples extracted per run, so when the irradiation power was set to 500 W, the extraction times varied from 6 min for 1 sample to 18 min for 8 samples. Analytical determinations were carried out by high-performance liquid chromatography (HPLC) with an ultraviolet-visible photodiode-array detector for PAHs and gas chromatography (GC) using a FID detector for LAHs. To test the accuracy of the microwave-assisted extraction (MAE) technique, optimized methodology was applied to the analysis of standard reference material (SRM 1941), obtaining acceptable results.  相似文献   

4.
《Analytical letters》2012,45(3):531-542
Microwave-assisted extraction of sixteen polycyclic aromatic hydrocarbons and their gas chromatographic mass spectrometric detection are presented herein. An efficient extraction was achieved in 15 minutes using 10 mL of 1:1 n-hexane-acetone while a clean-up step was developed studying the elution curves on solid phase extraction silica cartridges. The analytical method was optimized and validated using a certified reference marine sediment; satisfactory figures of merit were obtained with limits of detection in the range 0.001–0.004 µg/g, precision within 6%, and good linearity (regression coefficients generally higher than 0.998, in the concentration range 0.010–1.000 µg/mL). The developed method was successfully applied to the determination of polycyclic aromatic hydrocarbons in real marine sediments collected in two coastal areas of Italy exposed to different anthropic impact: three tourist sites of Liguria and the Venetian Lagoon. The total concentration of the analytes in the samples was in the range 1.027–3.827 µg/g and the use of common markers suggested their probable pyrolytic origin.  相似文献   

5.
A new sampling method of ambient air analysis using carbonized fibrous resin as a sorbent for polycyclic aromatic hydrocarbons(PAHs) was reported.The physical and chemical properties of the carbonized fibrous resins were measured.The sample pretreatment with ultrasonic extraction and subsequent clean-up elution through a silica gel column was optimized.The suitable ultrasonic extraction conditions were selected as follows:resin weight was 1.5g,ultrasonic extraction time 20min,volume of extraction solvent 100 ml and extraction operation times 2-3.The concentrated extractable organic matter was submitted to next step of clean-up procedure of adsorption chromatography on silica gel column/n-hexane and a mixture of dichloromethene:n-hexane solution 2:3(v/v).The PAHs fractions in the real samples from Changzhou,China were particularly analyzed using GC-MS data system and the data of mass spectra,retention times and scan numbers of the real samples were compared with that of the standards of 16 PAHs listed by the US EPA as “priority pollutants” of the environment. The pretreatment of samples of ambient air with carbonized fibrous resin as a sorbent for PAHs is proved to be reliable and might be used for the procedure of the determination of PAHs in atmospheric environment.  相似文献   

6.
A liquid-liquid partitioning method was optimized for the rapid and quantitative separation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from aliphatic hydrocarbons in complex primary extracts. This technique was based on the selective extraction of PAHs and PCBs from an aliphatic solvent into dimethylformamide (DMF). Partition experiments demonstrated that the optimal performance was achieved with a DMF (5% H2O)-n-pentane binary system. The optimized application of two consecutive DMF (5% H2O)-n-pentane treatments to extracts from two different polluted sediments facilitated the elimination of alkanes and unresolved complex mixture by more than 94% while the average recoveries of spiked deuterated-PAHs and 13C labeled PCBs ranged from 84 to 94 and 75 to 96%, respectively.  相似文献   

7.
建立了快速溶剂萃取(ASE)-气相色谱-串联质谱(GC-MS/MS)分析海洋沉积物中16种多环芳烃(PAHs)的分析方法。样品由正己烷-丙酮(1∶1,v/v)溶液萃取,经无水硫酸钠脱水、氮吹浓缩后,采用硅胶固相萃取小柱进行净化,然后经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,在电子轰击电离源下以多反应监测(MRM)模式进行检测,内标法定量。分析结果表明,16种PAHs在0.01~1.00 mg/L范围内线性关系良好,相关系数(R)大于0.997;目标物的加标回收率为75.8%~97.8%;日内与日间精密度(RSD)均小于10%。当取样量为20.0 g时,16种PAHs的方法检出限为0.048~0.234 μg/kg。该法快速、准确、稳定,能够满足海洋沉积物中痕量PAHs的测定。  相似文献   

8.
An analytical procedure based on extraction by accelerated solvent extraction (ASE) followed by gas chromatography–mass spectrometry (GC/MS) analysis has been developed for the determination of particulate polycyclic aromatic hydrocarbons (PAHs) from large-volume water samples (20 L). The effect of temperature and number of cycles on the efficiency of ASE was investigated: the best results were obtained by using a temperature of 100°C and one static cycle. A mixture of hexane/acetone 1:1 (v/v) was used as extraction solvent. Mean total method recovery under optimized conditions was 85%. The developed methodology was applied to the analysis of suspended particulate matter from Lake Maggiore waters (north of Italy). Mean PAH concentrations in suspended particulate matter from Lake Maggiore ranged from 0.2 ng L−1 for anthracene to 18.7 ng L−1 for naphthalene.  相似文献   

9.
In this present study the extraction of polycyclic aromatic hydrocarbons (PAHs) from marine sediments with a micellar medium of Polyoxyethylene 10 lauryl ether by an ultrasound-assisted method has been studied. Factorial design experiments were used in order to optimize the extraction parameters: extraction time, surfactant concentration and surfactant volume:amount of sediment relationship. The results suggest that surfactant concentration is statistically the most significant factor. The analysis of extracts has been carried out by HPLC with UV detection. Fortified sediments gave an average recovery between 86.7 and 106.6%, with relative standard deviation of 2.02-6.83% for PAHs with a ring number higher than three.  相似文献   

10.
气相色谱质谱法测定化妆品中9种多环芳烃   总被引:1,自引:0,他引:1  
建立了气相色谱质谱法测定化妆品中9种多环芳烃的分析方法。化妆品中的萘、苯并[a]蒽、、苯并[b]荧蒽、苯并[j]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘、二苯并[a,h]蒽等9种多环芳烃用甲醇超声提取后,用环己烷液-液萃取后浓缩,经硅胶-中性氧化铝柱净化后,采用气相色谱-质谱测定。多环芳烃浓度在0.05~2 mg/L范围内,质量浓度与其峰面积呈良好的线性关系。在低、中、高3个添加水平下,9种多环芳烃化合物的平均回收率为81.6%~100.2%,相对标准偏差为1.3%~5.8%。方法可用于化妆品中多环芳烃的检测。  相似文献   

11.
To improve the extraction of polycyclic aromatic hydrocarbons (PAHs) from sediment samples, we optimized the conditions of pressurized liquid extraction (PLE). The yields increased as the extraction temperature increased from 100 to 190 degrees C, but the effect of increasing pressure (from 15 to 20 MPa) was small. Parameters of 190 degrees C and 20 MPa, near the maximum of the equipment, gave the highest yield. Under these conditions, the yields of 17 PAHs were 1.5 - 34 times those obtained by the Japanese official method (shaking and ultrasonic extraction with acetone at room temperature).  相似文献   

12.
This paper describes a simple and rapid sample preparation procedure allowing to measure the stable carbon isotopic composition of polycyclic aromatic hydrocarbons (PAHs) in petroleum and in sediments. The aromatic fraction is first purified and isolated on alumina and silica micro-columns. A high-performance liquid chromatography fractionation allows one then to isolate each aromatic family in order to limit coelutions between PAHs. Moreover, this purification step reduces the importance of the unresolved complex mixture which otherwise contribute to the GC-isotope ratio MS background signal. The application of this analytical procedure has allowed one to determined PAH isotopic composition in a reference material crude oil (SRM 1582) and a marine sediment (SRM 1944) with good reproducibility as uncertainties between three independent assays performed were lower than 0.5 per thousand. This analytical procedure has then been successfully applied to confirm the contamination of a sediment by the petroleum product spilled by the Erika tanker after its wreck on 12 December 1999 close to the Atlantic Coast of France.  相似文献   

13.
The presence of polycyclic aromatic hydrocarbons (PAHs) in soil is an issue of concern due to their harmful effects on human health. The goal of this study was to optimize ultrasonic extraction to establish an efficient, easy, and low-cost method for the determination of 16 priority PAHs in soil. The time of extraction and solvent systems were optimized with the analysis by gas chromatography–mass spectrometry. The method was validated, and the optimum results were obtained using 1:1 cyclohexane:acetone and 1:1 hexane:acetone solvent systems with 30- and 60-min sonication times.  相似文献   

14.
A multiresidue method was developed for the de termination of 16 polycyclic aromatic hydrocarbons (PAHs) in unifloral and multifloral honeys. The analytical procedure is based on the matrix solid-phase dispersion of honey on a mixture of Florisil and anhydrous sodium sulfate in small glass columns and extraction with hexane-ethyl acetate (90 + 10, v/v) with assisted sonication. The PAH residues are determined by gas chromatography with mass spectrometric detection using selected-ion monitoring. Average recoveries for all the PAHs studied were in the range of almost 80 to 101%, with relative standard deviations of 6 to 15%. The limits of detection ranged from 0.04 to 2.9 microg/kg. The simultaneous extraction and cleanup of samples makes this method simple and rapid, with low consumption of organic solvents  相似文献   

15.
A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.  相似文献   

16.
A pressurized liquid extraction (PLE) method has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil samples and it was compared with ultrasonic extraction. The extraction step was followed by gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS/MS) analysis. Parameters such as type of solvent, extraction time, extraction temperature and number of extractions were optimized. There were no significant differences among the two extraction methods although better extraction efficiencies were obtained when PLE was used, minimizing extraction time and solvent consumption. PLE procedure was validated, obtaining limits of detection (LODs) ranging from 0.02 to 0.75 μg kg−1 and limits of quantification (LOQs) ranging from 0.07 to 2.50 μg kg−1 for the selected PAHs. Recoveries were in the range of 59-110%, except for naphthalene, which was the most volatile PAH. Finally, the method was applied to real soil samples from Southeast of Spain. PAHs concentrations were low, and phenanthrene, pyrene, fluorene, benzo[a]pyrene and chrysene were the most frequently detected analytes in the samples.  相似文献   

17.
The composition of the dopant for the analysis of polycyclic aromatic hydrocarbons (PAHs) by liquid chromatography/dopant-assisted atmospheric-pressure photoionization/mass spectrometry under reversed-phase conditions was optimized to enhance the ionization efficiency for PAHs. The most suitable dopant was a toluene/anisole mixture (99.5:0.5, v/v) and it could improve limit of detections (LODs) to 0.79-168 ng mL(-1) (signal-to-noise (S/N)=3) for 16 common PAHs. The LODs are 3.8-40 times lower than those obtained with toluene alone and are comparable to those obtained using gas chromatography/mass spectrometry.  相似文献   

18.
沉积物是多环芳烃(polycyclic aromatic hydrocarbons,PAHs)在环境中迁移归趋的一个重要的汇[1]。沉积物中多环芳烃的提取方法主要有索氏提取、超声波提取、微波萃取、加速溶剂提取及超临界流体萃取等。其中加速溶剂提取(accelerated solvent extraction,ASE)由于提取速度快,溶  相似文献   

19.
A sensitive method for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) using alcoholic-assisted dispersive liquid-liquid microextraction (AA-DLLME) and HPLC was developed. The extraction procedure was based on alcoholic solvents for both extraction and dispersive solvents. The effective parameters (type and volume of extraction and dispersive solvents, amount of salt and stirring time) on the extraction recovery were studied and optimized utilizing factorial design (FD) and central composite design (CCD). The best recovery was achieved by FD using 2-ethyl-1-hexanol as the extraction solvent and methanol as the dispersive solvent. The results showed that volume of dispersive solvent and stirring time had no effect on the recovery of PAHs. The optimized conditions were 145 μL of 2-ethyl-1-hexanol as the extraction solvent and 4.2% w/v of salt (NaCl) in sample solution. The enrichment factors of PAHs were in the range of 310-325 with limits of detection of 0.002-0.8 ng/mL. The linearity was 0.01-800 ng/mL for different PAHs. The relative standard deviation (RSD) for intra- and inter-day of extraction of PAHs were in the range of 1.7-7.0 and 5.6-7.3, respectively, for five measurements. The method was also successfully applied for the determination of PAHs in environmental water samples.  相似文献   

20.
A new solid-phase extraction method for the clean-up and the quantitation by GC-MS of regulated polycyclic aromatic hydrocarbons (PAHs) from lettuce was developed and the experimental conditions were optimized. After ultrasonic extraction using toluene and saponification of samples, a clean-up of extracts through solid-phase extraction was performed. Samples were finally analyzed by gas chromatography-mass spectrometry (GC-MS) using an internal deuterated standard. Saponification by KOH in methanol-water (80:20) was successful allowing a good elimination of the interfering chlorophylls from the extracts containing the PAHs. The average recovery of the 16 regulated PAHs was 70, 74, 79 and 89%, respectively, for naphthalene, acenaphthylene, acenaphthene and chrysene and higher than 94% for the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号