首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systematically synthetic zinc 3-hydroxymethyl-131-oxo-chlorins esterified by different linear alcohols (methanol, 1-propanol, 1-hexanol, 1-dodecanol and 1-octadecanol) at the 17-propionate were self-assembled in the presence of cetyltrimethylammonium bromide in an aqueous solution. These zinc chlorins exhibited red-shifted Q y absorption bands and circular dichroism (CD) signals in the corresponding Q y region after incubation for 17 h, indicating that the zinc chlorins formed self-aggregates like those in natural chlorosomes of green photosynthetic bacteria. Visible absorption and CD spectra of self-aggregates of the zinc chlorins depended on the length of their esterifying alcohols. Zinc chlorins esterified by shorter alcohols gave larger changes in their visible absorption and CD spectra after incubation above 40°C, whereas zinc chlorins esterified by longer alcohols afforded smaller changes. These results indicate that hydrophobic interaction among esterifying chains of chlorin molecules as well as that between the esterifying chains and peripheral surfactants or lipids play an important role in the stability of chlorosomal self-aggregates.  相似文献   

2.
Chlorophyll a and chlorophyll b exhibit distinct spectra yet differ only in the nature of a single substituent (7-methyl versus 7-formyl, respectively). Two complementary approaches have been developed for the synthesis of 7-substituted chlorins. The first approach is a de novo route wherein 2,9-dibromo-5-p-tolyldipyrromethane (Eastern half) and 9-formyl-2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin (Western half) undergo acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The resulting zinc chlorin is sterically uncongested and bears (1) a geminal dimethyl group in the reduced, pyrroline ring, (2) a bromo substituent at the 7-position, and (3) a p-tolyl group at the 10-position. The second approach entails regioselective 7-bromination of a 10,15-diarylchlorin that lacks a substituent at the 5-position. In an extension of this latter approach, a 5,15-diarylchlorin that lacks a substituent at the 10-position undergoes regioselective bromination at the 8-position. The introduction of a TIPS-ethynyl, acetyl, or formyl group at the 7-position was achieved using Pd-catalyzed reactions with the corresponding 7-bromochlorin. In the 10-p-tolyl-substituted zinc chlorins, the series of substituents (7-TIPS-ethynyl, 7-acetyl, 7-formyl) progressively causes (1) a bathochromic shift in the absorption maximum of the B band (405 to 426 nm) and (2) a hypsochromic shift in the position of the Qy band (605 to 598 nm). The trends mirror those for chlorophyll b versus chlorophyll a but are of lesser magnitude. Taken together, the facile access to chlorins that bear auxochromes at the 7-position enables wavelength tunability and provides the foundation for fundamental spectroscopic studies.  相似文献   

3.
The chlorosomal light-harvesting antennae of green phototrophic bacteria consist of large supramolecular aggregates of bacteriochlorophyll c (BChl c). The supramolecular structure of (3(1)-R/S)-BChl c on highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS2) has been investigated by scanning tunneling microscopy (STM). On MoS2, we observed single BChl c molecules, dimers or tetramers, depending on the polarity of the solvent. On HOPG, we observed extensive self-assembly of the dimers and tetramers. We propose C=O...H-O...Mg bonding networks for the observed dimer chains, in agreement with former ultraviolet-visible and infrared spectroscopic work. The BChl c moieties in the tetramers are probably linked by four C=O...H-O hydrogen bonds to form a circle and further stabilized by Mg...O-H bondings to underlying BChl c layers. The tetramers form highly ordered, distinct chains and extended two-dimensional networks. We investigated semisynthetic chlorins for comparison by STM but observed that only BChl c self-assembles to well-structured large aggregates on HOPG. The results on the synthetic chlorins support our structure proposition.  相似文献   

4.
Chlorins bearing synthetic handles at specific sites about the perimeter of the macrocycle constitute valuable building blocks. We previously developed methodology for preparing meso-substituted chlorin building blocks and now present methodology for preparing several complementary beta-substituted chlorin building blocks. The chlorins bear one or two beta substituents, one meso substituent, a geminal dimethyl group to lock in the chlorin hydrogenation level, and no flanking meso and beta substituents. The synthesis involves convergent joining of an Eastern half and a Western half. New routes have been developed to two beta-substituted bromo-dipyrromethane monocarbinols (Eastern halves). A new beta-substituted Western half was prepared following the method for preparing an unsubstituted Western half (3,3-dimethyl-2,3-dihydrodipyrrin). Chlorin formation is achieved by a two-flask process of acid-catalyzed condensation followed by metal-mediated oxidative cyclization. beta-Substituted chlorins have been prepared in 18-24% yield bearing a 4-iodophenyl group at the 8-position, a 4-iodophenyl group or a 4-[2-(trimethylsilyl)ethynyl]phenyl group at the 12-position, and a 4-iodophenyl group and a 4-[2-(trimethylsilyl)ethynyl]phenyl group at diametrically opposed beta-positions (2, 12). The latter building block makes possible the stepwise construction of linear multi-chlorin architectures. The chlorins exhibit typical absorption and fluorescence spectra. A systematic shift in the absorption maximum (637-655 nm for the free base chlorins, 606-628 nm for the zinc chlorins) and intensity of the chlorin Q(y)() band (epsilon up to 79 000 M(-)(1) cm(-)(1)) is observed depending on the location of the substituents. The characteristic spectral features and location of substituents in defined positions make these chlorins well suited for a variety of applications in biomimetic and materials chemistry.  相似文献   

5.
The use of chlorins as photosensitizers or fluorophores in a range of biological applications requires facile provisions for imparting high water solubility. Two free base chlorins have been prepared wherein each chlorin bears a geminal dimethyl group in the reduced ring and a water-solubilizing unit at the chlorin 10-position. In one design (FbC1-PO3H2), the water-solubilizing unit is a 1,5-diphosphonopent-3-yl ("swallowtail") unit, which has previously been used to good effect with porphyrins. In the other design (FbC2-PO3H2), the water-solubilizing unit is a 2,6-bis(phosphonomethoxy)phenyl unit. Two complementary routes were developed for preparing FbC2-PO3H2 that entail introduction of the protected phosphonate moieties either in the Eastern-half precursor to the chlorin or by derivatization of an intact chlorin. Water-solubilization is achieved in the last step of each synthesis upon removal of the phosphonate protecting groups. The chlorins FbC1-PO3H2 and FbC2-PO3H2 are highly water-soluble (>10 mM) as shown by 1H NMR spectroscopy (D2O) and UV-vis absorption spectroscopy. The photophysical properties of the water-soluble chlorins in phosphate-buffered saline solution (pH 7.4) at room temperature were investigated using static and time-resolved absorption and fluorescence spectroscopic techniques. Each chlorin exhibits dominant absorption bands in the blue and the red region (lambda = 398, 626 nm), a modest fluorescence yield (Phi f approximately 0.11), a long singlet excited-state lifetime (tau = 7.5 ns), and a high yield of intersystem crossing to give the triplet state (Phi isc = 0.9). The properties of the water-soluble chlorins in aqueous media are comparable to those of hydrophobic chlorins in toluene. The high aqueous solubility combined with the attractive photophysical properties make these compounds suitable for a wide range of biomedical applications.  相似文献   

6.
The multichromophoric dyads 1, 2 and triad 3 have been synthesized by coupling of the appropriately functionalized chlorin derivative with naphthalene diimide dyes through esterification, and subsequent metalation of the chlorin center with zinc acetate. The self-assembly properties of naphthalene diimide (NDI)-zinc chlorin (ZnChl) dyads 1, 2 and triad 3 have been studied in nonpolar, aprotic solvents by UV-vis, CD, and steady-state emission spectroscopy, revealing formation of rod-like structures by noncovalent interactions of zinc chlorin units, while the appended naphthalene diimide dyes do not aggregate at the periphery of the rod antennae. In all these systems, photoexcitation of the enveloping naphthalene diimides at 540 and 620 nm, respectively, leads to highly efficient energy-transfer processes (FRET; phiET > or = 0.99) to the inner zinc chlorin backbone, as explored by time-resolved fluorescence spectroscopy on the picosecond time scale. The efficiencies of zinc chlorin rod aggregates for the harvesting of solar light are markedly increased from 26% for dyad 2 up to 63% for triad 3, compared to the LH capacity of the monochromophoric aggregates of model system ZnChl 6a. Thus, with the self-assembled zinc chlorin rod antenna based on triad 3, a highly efficient artificial LH system has been achieved.  相似文献   

7.
We describe a two-step conversion of C-alkylated zinc chlorins to zinc oxochlorins wherein the keto group is located in the reduced ring (17-position) of the macrocycle. The transformation proceeds by hydroxylation upon exposure to alumina followed by dehydrogenation with DDQ. The reactions are compatible with ethyne, iodo, ester, trimethylsilyl, and pentafluorophenyl groups. A route to a spirohexyl-substituted chlorin/oxochlorin has also been developed. Representative chlorins and oxochlorins were characterized by static and time-resolved absorption spectroscopy and fluorescence spectroscopy, resonance Raman spectroscopy, and electrochemistry. The fluorescence quantum yields of the zinc oxochlorins (Phi(f) = 0.030-0.047) or free base (Fb) oxochlorins (Phi(f) = 0.13-0.16) are comparable to those of zinc tetraphenylporphyrin (ZnTPP) or free base tetraphenylporphyrin (FbTPP), respectively. The excited-state lifetimes of the zinc oxochlorins (tau = 0.5-0.7 ns) are on average 4-fold lower than that of ZnTPP, and the lifetimes of the Fb oxochlorins (tau = 7.4-8.9 ns) are approximately 40% shorter than that of FbTPP. Time-resolved absorption spectroscopy of a zinc oxochlorin indicates the yield of intersystem crossing is >70%. Resonance Raman spectroscopy of copper oxochlorins show strong resonance enhancement of the keto group upon Soret excitation but not with Q(y)()-band excitation, which is attributed to the location of the keto group in the reduced ring (rather than in the isocyclic ring as occurs in chlorophylls). The one-electron oxidation potential of the zinc oxochlorins is shifted to more positive potentials by approximately 240 mV compared with that of the zinc chlorin. Collectively, the fluorescence yields, excited-state lifetimes, oxidation potentials, and various spectral characteristics of the chlorin and oxochlorin building blocks provide the foundation for studies of photochemical processes in larger architectures based on these chromophores.  相似文献   

8.
Synthetic chlorins bearing diverse auxochromes at the 3- and 13-positions of the macrocycle are valuable targets given their resemblance to chlorophylls a and b, which bear 3-vinyl and 13-keto groups. A de novo route has been exploited to construct nine zinc chlorins bearing substituents at the 3- and 13-positions and two benchmark zinc chlorins lacking such substituents. The chlorins are sterically uncongested and bear (1) a geminal dimethyl group in the reduced pyrroline ring, (2) a H, an acetyl, a triisopropylsilylethynyl (TIPS-ethynyl), or a vinyl at the 3-position, (3) a H, an acetyl, or TIPS-ethynyl at the 13-position, and (4) a H or a mesityl at the 10-position. The synthesis of the 13-substituted chlorins relied on p-TsOH x H2O-catalyzed condensation of an 8,9-dibromo-1-formyldipyrromethane (eastern half) and 2,3,4,5-tetrahydro-1,3,3-trimethyldipyrrin (western half), followed by metal-mediated oxidative cyclization, affording the 13-bromochlorin. Similar use of a bromo- or TIPS-ethynyl-substituted western half provided access to 3-substituted chlorins. A 3-bromo, 13-bromo, or 3,13-dibromochlorin was further transformed by Pd-coupling to introduce the vinyl group (via tributylvinyltin), TIPS-ethynyl group (via TIPS-acetylene), or acetyl group (via tributyl(1-ethoxyvinyl)tin, followed by acidic hydrolysis). In the 10-mesityl-substituted zinc chlorins, the series of substituents, 3-vinyl, 13-TIPS-ethynyl, 3-TIPS-ethynyl, 13-acetyl, 3,13-bis(TIPS-ethynyl), 3-TIPS-ethynyl-13-acetyl, or 3,13-diacetyl, progressively causes (1) a redshift in the absorption maximum of the B band (405-436 nm) and the Q(y) band (606-662 nm), (2) a relative increase in the intensity of the Q(y) band (I(B)/I(Q) = 4.2-1.5), and (3) an increase in the fluorescence quantum yield phi(f) (0.059-0.29). The zinc chlorins bearing a 3-TIPS-ethynyl-13-acetyl or a 3,13-diacetyl group exhibit a number of spectral properties resembling those of chlorophyll a or its zinc analogue. Taken together, this study provides access to finely tuned chlorins for spectroscopic studies and diverse applications.  相似文献   

9.
An artificial light-harvesting rod aggregate based on zinc chlorin and covalently linked naphthalene bisimide chromophore has been realized by self-assembly. Efficient energy transfer (phiET >/= 0.99) takes place upon excitation at 620 nm from peripheral naphthalene bisimides to the zinc chlorin rod aggregate backbone. The appended naphthalene bisimide dyes improve the total LH efficiency of the rod aggregate by 26%. Thus, the present bioinspired antenna system is promising for application in nanodevices for the effective utilization of solar energy by bridging the "green gap".  相似文献   

10.
Understanding the effects of substituents on the spectra of chlorins is essential for a wide variety of applications. Recent developments in synthetic methodology have made possible systematic studies of the properties of the chlorin macrocycle as a function of diverse types and patterns of substituents. In this paper, the spectral, vibrational and excited-state decay characteristics are examined for a set of synthetic chlorins. The chlorins bear substituents at the 5,10,15 (meso) positions or the 3,13 (beta) positions (plus 10-mesityl in a series of compounds) and include 24 zinc chlorins, 18 free base (Fb) analogs and one Fb or zinc oxophorbine. The oxophorbine contains the keto-bearing isocyclic ring present in the natural photosynthetic pigments (e.g. chlorophyll a). The substituents cause no significant perturbation to the structure of the chlorin macrocycle, as evidenced by the vibrational properties investigated using resonance Raman spectroscopy. In contrast, the fluorescence properties are significantly altered due to the electronic effects of substituents. For example, the fluorescence wavelength maximum, quantum yield and lifetime for a zinc chlorin bearing 3,13-diacetyl and 10-mesityl groups (662 nm, 0.28, 6.0 ns) differ substantially from those of the parent unsubstituted chlorin (602 nm, 0.062, 1.7 ns). Each of these properties of the lowest singlet excited state can be progressively stepped between these two extremes by incorporating different substituents. These perturbations are associated with significant changes in the rate constants of the decay pathways of the lowest excited singlet state. In this regard, the zinc chlorins with the red-most fluorescence also have the greatest radiative decay rate constant and are expected to have the fastest nonradiative internal conversion to the ground state. Nonetheless, these complexes have the longest singlet excited-state lifetime. The Fb chlorins bearing the same substituents exhibit similar fluorescence properties. Such combinations of factors render the chlorins suitable for a range of applications that require tunable coverage of the solar spectrum, long-lived excited states and red-region fluorescence.  相似文献   

11.
The synthesis and complete assignment of the 1H NMR spectra of 5-(o-pivaloylaminophenyl)-10,15,20-triphenylporphyrin (PIVTPP) and its two chiral dihydro adducts 3,4-dihydro-(PIVPTPC-I)- and 7,8-dihydr- (PIVPTPC-II)-porphyrins are reported. The use of the zinc complexes of the chlorins as chiral shift reagents with optically active bases is discussed. Comparison of the observed shift differences between the chlorins and the parent porphyrin with those calculated by a ring current model shows that a decrease in the ring current occurs on chlorin formation, and also specific effects occur at the reduced pyrrole ring, presumably reflecting different steric constraints.  相似文献   

12.
Chlorins provide the basis for plant photosynthesis, but synthetic model systems have generally employed porphyrins as surrogates due to the unavailability of suitable chlorin building blocks. We have adapted a route pioneered by Battersby to gain access to chlorins that bear two meso substituents, a geminal dimethyl group to lock in the chlorin hydrogenation level, and no flanking meso and beta substituents. The synthesis involves convergent joining of an Eastern half and a Western half. A 3,3-dimethyl-2,3-dihydrodipyrrin (Western half) was synthesized in four steps from pyrrole-2-carboxaldehyde. A bromodipyrromethane carbinol (Eastern half) was prepared by sequential acylation and bromination of a 5-substituted dipyrromethane followed by reduction. Chlorin formation is achieved by a two-flask process of acid-catalyzed condensation followed by metal-mediated oxidative cyclization. The latter reaction has heretofore been performed with copper templates. Investigation of conditions for this multistep process led to copper-free conditions (zinc acetate, AgIO(3), and piperidine in toluene at 80 degrees C for 2 h). The zinc chlorin was obtained in yields of approximately 10% and could be easily demetalated to give the corresponding free base chlorin. The synthetic process is compatible with a range of meso substituents (p-tolyl, mesityl, pentafluorophenyl, 4-[2-(trimethylsilyl)ethynyl]phenyl, 4-iodophenyl). Altogether four free base and four zinc chlorins have been prepared. The chlorins exhibit typical absorption spectra, fluorescence spectra, and fluorescence quantum yields. The ease of synthetic access, presence of appropriate substituents, and characteristic spectral features make these types of chlorins well suited for incorporation in synthetic model systems.  相似文献   

13.
The reaction center complex of heliobacteria contains three kinds of chlorophyll pigments, bacteriochlorophyll gF (BChl gF), its 13(2)-epimer BChl gF' and 8(1)-hydroxy-chlorophyll aF (8(1)-OH-Chl aF). Because the full stereochemistry of these naturally occurring chlorophyllous pigments has remained unknown, we determined the stereochemistry of both BChl gF and 8(1)-OH-Chl aF extracted from Heliobacterium modesticaldum. The configurations of the specific functional groups at ring-B as well as those at ring-D and -E were investigated by use of nuclear Overhauser effect correlations in their 1H-NMR spectra and circular dichroism spectra, as well as by modified Mosher's method in their chemical modification: (1) E-configuration was confirmed for the 8-ethylidene group at ring-B in BChl gF, (2) R-configuration was identified for the 1-hydroxyethyl group at ring-B in 8(1)-OH-Chl aF and (3) 13(2)-(R)-, 17-(S)- and 18-(S)-configurations at ring-D and -E in both BChl gF and 8(1)-OH-Chl aF were confirmed. These stereochemistries enabled us to discuss their biosynthesis and to propose possible routes for preparation of ethylidene and 1-hydroxyethyl groups at the 8-position.  相似文献   

14.
Two kinds of zinc 31-hydroxy-131-oxo-chlorins 1 and 2 possessing a pyrenyl group at the 17-propionate residue, of which the linker length between the chlorin and the pyrene moieties was varied, were synthesised from naturally occurring chlorophyll a, and were self-assembled in an aqueous solution. Both zinc chlorins 1 and 2 exhibited Qy absorption bands around 720 nm accompanying circular dichroism signals in the Qy region, indicating that these zinc chlorins could form self-aggregates like chlorosomes of green photosynthetic bacteria. Addition of γ-cyclodextrin into an aqueous solution containing the self-aggregates of zinc chlorin 1 esterified with 1-pyrenylmethanol induced the appearance of excimer emission of the pyrene moieties around 480 nm as well as increased the fluorescence intensities of the pyrene monomers at 378 and 396 nm, while only an increase in fluorescence from the monomeric pyrene moiety was observed in the case of 2 esterified with 4-(1-pyrenyl)butanol. Exogenous γ-cyclodextrin unchanged the spectral features derived from the chlorin moieties of 1 and 2 in the aqueous phase. These suggest that the encapsulation of the pyrenyl groups in the zinc chlorins unchanged their assembling states under the present conditions.  相似文献   

15.
The proton NMR spectra of tetraphenylporphyrin, octaethylporphyrin and the analogous chlorins (7,8-dihydroporphyrins) are presented, and the chemical shift changes on chlorin formation are interpreted using a ring current model. In these compounds a general 10% reduction in the ring current occurs upon chlorin formation. Similar comparison of the chemical shifts of the corresponding dications and also of the protonated form of 2-vinylphylloerythrin methyl ester with the corresponding chlorin, methyl pyropheophorbide-a, shows that chlorin formation now has a much larger effect on the ring current, this reflecting the increased steric effects within the macrocycle which occur upon protonation. Variable temperature studies on the porphyrins and chlorins examined show clearly the effect of NH exchange processes and, in particular, novel intermolecular exchange processes with trifluoroacetic acid in the protonated species are recorded.  相似文献   

16.
以脱镁叶绿酸-a甲酯为起始原料,通过对E-环、3-位碳碳双键和20-位meso-氢的结构修饰,在二氢卟吩色基上构建和引进不同的官能团,并进一步利用其3-位乙烯基与重氮甲烷的1,3-偶极环加成反应,完成一系列C-3-吡唑啉基取代的叶绿素类二氢卟吩衍生物的合成.同时,讨论了叶绿素衍生物的1,3-偶极环加成反应的的区域选择性与立体选择性.所得新的叶绿素类二氢卟吩衍生物的化学结构均经UV,IR,1H NMR及元素分析得以证实.  相似文献   

17.
A set of chlorin-chlorin and oxochlorin-oxochlorin dyads has been prepared with components in the same or different metalation states. In each case a 4,4'-diphenylethyne linker spans the respective 10-position of each macrocycle. The dyads have been studied using static and time-resolved absorption and emission spectroscopy, resonance Raman spectroscopy, and electrochemical techniques. Excited-state energy transfer from a zinc chlorin to a free-base (Fb) chlorin occurs with a rate constant of (110 ps)(-1) and an efficiency of 93%; similar values of (140 ps)(-1) and 83% are found for the corresponding oxochlorin dyad. Energy transfer in both dyads is slower and less efficient than found previously for the analogous porphyrin dyad, which displays a rate of (24 ps)(-1) and a yield of 99%. The slower rates and diminished efficiencies in the ZnFb chlorin and oxochlorin dyads versus the ZnFb porphyrin dyad are attributed to substantially weaker linker-mediated through-bond (TB) electron-exchange coupling (as indicated by resonance Raman data). Although the through-space (TS, i.e., dipole-dipole) coupling in the ZnFb-chlorin and -oxochlorin dyads is enhanced relative to the ZnFb porphyrin dyad (as indicated by F?rster calculations), this enhancement is insufficient to compensate for the greatly diminished TB coupling. Taken together, the chlorin and oxochlorin dyads examined herein serve as benchmarks for elucidating the energy-transfer, electrochemical, and other properties of light-harvesting arrays containing multiple chlorins or oxochlorins.  相似文献   

18.
Self-assembled aggregates of a synthetic zinc chlorin in an aqueous suspension with either α-lecithin or Triton X-100 exhibit unique structural and functional properties. Absorption, circular dichroism, fluorescence, and resonance Raman spectra indicate that the supramolecular structure in an aqueous microheterogeneous medium is very similar to that of the bacteriochlorophyll c aggregates in non-polar organic solvents and in chlorosomes, the main light-harvesting antennae of green photosynthetic bacteria. The nature of the aggregates is controlled by structure and/or concentration of the added surfactants. When a small amount of metal-free bacteriochlorin is present it acts as an efficient energy acceptor from the aggregated zinc chlorins. Thus, self-assembly of synthetic zinc chlorins, doped with appropriate energy acceptors and surrounded with surfactants, affords an artificial supramolecular light-harvesting device in aqueous environment.  相似文献   

19.
Zinc 3-hydroxymethyl-13-formyl-chlorin, 1, and its 3,13-inverted (3-formyl-13-hydroxymethyl) regioisomer, 2, and their corresponding 17,18-dehydrogenated porphyrins, 3 and 4, were synthesized for models of natural bacteriochlorophylls-c/d/e possessing 3(1)-OH and 13-C=O groups which self-aggregate in main light-harvesting antenna systems of green photosynthetic bacteria. Zinc chlorins 1 and 2 were monomers in neat THF and gave an obvious difference in their visible absorption spectra, indicating that sole inversion of the 3- and 13-substituents in a chlorin chromophore controlled their optical properties. In an aqueous Triton X-100 solution (a nonionic surfactant), zinc 3(1)-OH-13-CHO-chlorin 1 and porphyrin 3 self-aggregated as do natural bacteriochlorophylls, while zinc 3-CHO-13(1)-OH chlorin 2 and porphyrin 4 (the 3,13-inverted regioisomers of 1 and 3) hardly formed such large oligomers, showing that the inversion of the peripheral 3,13-substituents made their oligomerization unfavorable. FT-IR spectra of aggregated 1-4 in the solid film and their molecular modeling calculations suggested that the 17(2)-C=O moiety in inverted 2/4 interacted with its own 13(1)-OH group to disturb further aggregation.  相似文献   

20.
The NH tautomerism of five Mg-free chlorophyll a and b derivatives 2-6 was studied utilizing NMR spectroscopy and molecular modeling. The results from the dynamic NMR measurements of the chlorins revealed that substituent effects contribute crucially to the free energy of activation (DeltaG(double dagger)) in the NH tautomeric processes. An intermediate tautomer for the total tautomeric NH exchange in a chlorin was observed for the first time, when the (1)H NMR spectra of chlorin e(6) TME (3) and rhodin g(7) TME (4) (TME = trimethyl ester) were measured at lower temperatures. The lower energy barriers (DeltaG(1)(double dagger)) obtained for the formation of the intermediate tautomers of 3 and 4, assigned to the N(22)-H, N(24)-H trans-tautomer, were 10.8 and 10.6 kcal/mol, respectively. The energy barrier (DeltaG(2)(double dagger) value) for the total tautomeric NH exchange in the five chlorins was found to vary from 13.6 kcal/mol to values higher than 18 kcal/mol. The lowest DeltaG(2)(double dagger) value (13.6 kcal/mol) was obtained for rhodochlorin XV dimethyl ester (2), which was the only chlorophyll derivative lacking the C(15) substituent. In the case of chlorins 4 and 5, the steric crowding around the methoxycarbonylmethyl group at C(15) raised the DeltaG(2)(double dagger) activation free-energy to 17.1 kcal/mol. However, the highest energy barrier with DeltaG(2)(double dagger) > 18 kcal/mol was observed for the NH exchange of pyropheophorbide a methyl ester (6), possessing the macrocycle rigidifying isocyclic ring E. Our results demonstrate that the steric strain, arising either from the steric crowding around the bulky substituent at C(15) or the macrocycle rigidifying isocyclic ring E, slows down the NH tautomeric process. We suggest that deformations in the chlorin skeleton are closely connected to the NH tautomeric exchange and that the exchange occurs by a stepwise proton-transfer mechanism via a hydrogen bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号