首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study relaxation towards a stationary out-of-equilibrium state by analyzing a one-dimensional stochastic process followed by a particle accelerated by an external field and propagating through a thermal bath. The effect of collisions is described within one-dimensional formulation of Boltzmann’s kinetic theory. We present analytical solutions for the Maxwell gas and for the very hard particle model. The exponentially fast relaxation of the velocity distribution towards the stationary form is demonstrated. In the reference frame moving with constant drift velocity the hydrodynamic diffusive mode is shown to govern the distribution in the position space. We show that the exact value of the diffusion coefficient for any value of the field is correctly predicted by the Green-Kubo autocorrelation formula generalized to the stationary state.  相似文献   

2.
The origin of the wave properties of matter is discussed from the point of view of stochastic electrodynamics. A nonrelativistic model of a charged particle with an effective structure embedded in the random zeropoint radiation field reveals that the field induces a high-frequency vibration on the particle; internal consistency of the theory fixes the frequency of this jittering at mc2/. The particle is therefore assumed to interact intensely with stationary zeropoint waves of this frequency as seen from its proper frame of reference; such waves, identified here as de Broglie's phase waves, give rise to a modulated wave in the laboratory frame, with de Broglie's wavelength and phase velocity equal to the particle velocity. The time-independent equation that describes this modulated wave is shown to be the stationary Schrödinger equation (or the Klein-Gordon equation in the relativistic version). In a heuristic analysis appled to simple periodic cases, the quantization rules are recovered from the assumption that for a particle in a stationary state there must correspond a stationary modulation. Along an independent and complementary line of reasoning, an equation for the probability amplitude in configuration space for a particle under a general potential V(x) is constructed, and it is shown that under conditions derived from stochastic electrodynamics it reduces to Schrödinger's equation. This equation reflects therefore the dual nature of the quantum particles, by describing simultaneously the corresponding modulated waveand the ensemble of particles.  相似文献   

3.
We consider the Hamiltonian system consisting of a scalar wave field and a single particle coupled in a translation invariant manner. The point particle is subjected to an external potential. The stationary solutions of the system are a Coulomb type wave field centered at those particle positions for which the external force vanishes. It is assumed that the charge density satisfies the Wiener condition, which is a version of the “Fermi Golden Rule.” We prove that in the large time approximation, any finite energy solution, with the initial state close to the some stable stationary solution, is a sum of this stationary solution and a dispersive wave which is a solution of the free wave equation.  相似文献   

4.
The Dirac equation is solved for an electron moving in a quantized plane-wave field in the classical field of a longitudinal traveling electric wave propagating in one direction. Through a canonical transformation of the photon creation and annihilation operators the problem is reduced to a quasiparticle problem; the quasiparticle energy depends on the time and the coordinates.  相似文献   

5.
The problem of separation of variables in the stationary Schrödinger equation is considered for a charge moving in an external electromagnetic field. On the basis of the definition formulated, necessary and sufficient conditions are found for separation of variables in equations of elliptic type to which the stationary Schrödinger equation belongs. Application of general theorems made it possible to enumerate all types of electromagnetic fields and systems of coordinates in which separation of variables in the stationary Schrödinger equation is possible. Systems of ordinary differential equations which the wave function in the separated variables satisfies are written down to explicit form.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 45–50, August, 1972.  相似文献   

6.
New cosmology     
We propose a model of our universe as a 3-sphere resting on the surface of a black hole which exists in a spacetime consisting of four space dimensions and one time dimension. The matter and energy within our universe exist as stationary solutions to the field equations in the Rindler coordinates just above the horizon of the black hole. Each solution may be though of as a standing wave consisting of a wave propagating toward the horizon superposed with its time-reversed twin propagating away from the horizon. As matter and energy from the greater five-dimensional spacetime fall into the black hole, its radius increases and our universe expands. This mechanism of expansion allows the model to describe a universe which is older than its oldest stars and homogeneous without inflation. It also predicts galaxy counts at high redshift which agree with observation.  相似文献   

7.
Six integrals of motion of a relativistic charge in the field of a transverse circularly polarized electromagnetic wave propagating with a phase velocity u > c are obtained from the solution of the Hamilton equations. These integrals form the basis of analysis of the trajectory of the charge depending on the phase of the wave in a stationary system of coordinates. The coordinates and phase are connected via elliptic functions.  相似文献   

8.
The Boltzmann equation describing one-dimensional motion of a charged hard rod in a neutral hard rod gas at temperatureT = 0 is solved. Under the action of a constant and uniform field the charged particle attains a stationary state. In the long time limit the velocity autocorrelation function decays via damped oscillations. In the reference system moving with the mean particle velocity the decay of fluctuations in the position space is governed (in the hydrodynamic limit) by the diffusion equation. Both the stationary current and the diffusion coefficient are proportional to the square root of the field. It is conjectured that this result also holds forT > 0 in a strong field limit.On leave from the Institute of Theoretical Physics, University of Warsaw, Hoza 69, 00-081 Warsaw, Poland.  相似文献   

9.
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.  相似文献   

10.
The most general quantum mechanical wave equation for a massive scalar particle in a metric generated by a spherically symmetric mass distribution is considered within the framework of higher derivative gravity (HDG). The exact effective Hamiltonian is constructed and the significance of the various terms is discussed using the linearized version of the above-mentioned theory. Not only does this analysis shed new light on the long standing problem of quantum gravity concerning the exact nature of the coupling between a massive scalar field and the background geometry, it also greatly improves our understanding of the role of HDG's coupling parameters in semiclassical calculations.  相似文献   

11.
The long-time behavior of the velocity distribution of a spatially uniform diluted guest population of charged particles moving within a host medium under the influence of a D.C. electric field is studied within the framework of scattering theory. We prove the existence of wave and scattering operators for a simplified one-dimensional model of the linearized Boltzmann equation. The theory is applied to the study of the long-term behavior of electrons and the occurrence of traveling waves in runaway processes.  相似文献   

12.
The linearized field equations of quadratic gravitation in stationary space-time are written in quasi-Maxwell form. The rotation of the polarization plane for an electromagnetic wave propagating in the gravito-electromagnetic field caused by a rotating gravitational lens is discussed. The influences of the Yukawa potential in quadratic gravitation on the gravitational Faraday rotation are investigated.  相似文献   

13.
On calculation of magnetic-type gravitation and experiments   总被引:1,自引:0,他引:1  
The linearized Einstein equations are written in the same form as the Maxwell equation. In the case of a weak stationary field and low velocity, the geodesic equations are written in the form of the Lorentz equation of motion. We suggest that the existence of the magnetic-type gravitation predicted by GR is equivalent to the existence of the gravitational wave predicted by GR. The Schiff effect is explained as one of the magnetic-type gravitation and the new effect is given. The Hall-type gravitational experiment is studied.  相似文献   

14.
The Pauli exclusion principle is interpreted using a geometrical theory of electrons. Spin and spatial motion are described together in an eight dimensional spinor coordinate space. The field equation derives from the assumption of conformal waves. The Dirac wave function is a gradient of the scalar wave in spinor space. Electromagnetic and gravitational interactions are mediated by conformal transformations. An electron may be followed through a sequence of creation and annihilation processes. Two electrons are branches of a single particle. Each satisfies a Dirac equation, but together they are a solution of the curvature condition. As two so identified electrons approach each other, the exclusion principle develops from the boundary conditions in spinor space. The gradient motion does not allow the particles to overlap. Since the spinor-gradient of the scalar wave function is odd in the coordinates, the sign of the wave function must change at the electron-electron boundary. The exclusion principle becomes geometry intrinsic and all electrons are combined into one field. Further applications are proposed including the possibility of improved numerical calculations in atomic and molecular systems. There also may be extensions to nuclear or particle physics. Implications are expected for the properties of rotating objects in a gravitational field.  相似文献   

15.
Planar near-field acoustical holography in a moving medium   总被引:1,自引:0,他引:1  
Near-field acoustical holography (NAH) is a well-established method to study acoustic radiation near a stationary sound source in a homogeneous, stationary medium. However, the current theory of NAH is not applicable to moving sound sources, such as automobiles and trains. In this paper, the inclusion of a moving medium (i.e., moving source and receiver) is introduced in the wave equation and a new set of equations for plannar NAH is developed. Equations are developed for the acoustic pressure, particle velocity, and intensity when mean flow is either parallel or perpendicular to the hologram plane. If the source and the measurement plane are moving at the same speed, the frequency Doppler effect is absent, but a wave number Doppler effect exists. This leads to errors when reconstructing the acoustic field both towards and away from the source using static NAH. To investigate these errors, a point source is studied analytically using planar NAH with flow in one direction. The effect of the medium moving parallel to the hologram plane is noted by a shift of the radiation circle in wave number space (k-space). A k-space Green's function and a k-space filter are developed that include the effects of the moving medium.  相似文献   

16.
提出求解位置-速度相空间中高维两相流PDF(probability density function)方程的有限分析方法,将位置-速度相空间颗粒PDF方程约化到速度空间,并解析求解,颗粒的位置PDF用轨道方法求解.对壁面射流两相流动进行数值模拟,并与颗粒雷诺应力轨道方法进行比较计算,结果优于颗粒雷诺应力轨道方法.  相似文献   

17.
The tomography of a single quantum particle (i.e., a quantum wave packet) in an accelerated frame is studied. We write the Schrödinger equation in a moving reference frame in which acceleration is uniform in space and an arbitrary function of time. Then, we reduce such a problem to the study of spatiotemporal evolution of the wave packet in an inertial frame in the presence of a homogeneous force field but with an arbitrary time dependence. We demonstrate the existence of a Gaussian wave packet solution, for which the position and momentum uncertainties are unaffected by the uniform force field. This implies that, similar to in the case of a force-free motion, the uncertainty product is unaffected by acceleration. In addition, according to the Ehrenfest theorem, the wave packet centroid moves according to classic Newton’s law of a particle experiencing the effects of uniform acceleration. Furthermore, as in free motion, the wave packet exhibits a diffraction spread in the configuration space but not in momentum space. Then, using Radon transform, we determine the quantum tomogram of the Gaussian state evolution in the accelerated frame. Finally, we characterize the wave packet evolution in the accelerated frame in terms of optical and simplectic tomogram evolution in the related tomographic space.  相似文献   

18.
We study a nonintegrable discrete nonlinear Schr?dinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term.  相似文献   

19.
An exact time-domain method is proposed to time reverse a transient scalar wave using only the field measured on an arbitrary closed surface enclosing the initial source. Under certain conditions, a time-reversed field can be approximated by retransmitting the measured signals in a reversed temporal order. Exact reconstruction for three-dimensional broadband diffraction tomography (a linearized inverse scattering problem) is proposed by time-reversing the measured field back to the time when each secondary source is excited. The algorithm is verified by a numerical simulation. Extension to the case using Green's function in a heterogeneous medium is discussed.  相似文献   

20.
提出了一种求解非紧凑低马赫数运动边界散射流动诱发噪声的预测方法。该方法首先基于运动坐标系下的连续性方程和动量方程推导得到该坐标系下的波动方程及其积分解,然后在该坐标系下采用边界元方法求解得到非紧凑运动边界表面的声压,最后将求解得到的壁面声压回代到静止或运动坐标系下的积分方程中实现对远场噪声的预测。推导得到的积分方程适用于流体与飞机机身、高速列车车身及旋转叶片等非紧凑结构边界作用诱发噪声的预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号