首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
n-ZnO:Al/n ?-ZnO/i-MgO/n-GaN heterostructured diodes have been fabricated by radio frequency magnetron sputtering. The electroluminescence (EL) of the n-ZnO:Al/n ?-ZnO/i-MgO/n-GaN diodes has been investigated. All EL spectra are dominated by ultraviolet (UV) emission peaked at around 368 nm. However, EL performances of the devices can be tuned through controlling the electrical parameters of ZnO:Al films. With the variation of the ZnO:Al films, EL spectra could evolve into random lasing action from conventional EL. The electrical parameters of the corresponding ZnO:Al films were researched, and the related UV emission mechanism is discussed in terms of the energy-band theory of the heterojunctions.  相似文献   

2.
B-N codoped ZnO (ZnO:(B,N)) films were grown on quartz substrate by radio-frequency (rf) magnetron sputtering. The influence of post-annealing ambient on electrical and optical properties of ZnO:(B,N) films were investigated using Hall and Photoluminescence (PL) measurement, respectively. Electrical properties studies indicate that both post-annealing ZnO:(B,N) showed p-type conduction. However, compared with ZnO:(B,N) annealed in oxygen, the ZnO:(B,N) annealed in vacuum have low resistivity and high concentration. The PL spectra indicate that two new emission bands located at 3.303 and 3.208 eV originate from the recombination of A0X and FA related to N acceptor for the annealed p-ZnO:(B,N) in vacuum, but of A0X, FA related to Zn vacancy for the annealed p-ZnO:(B,N) in oxygen. The mechanism of influence of post-annealing on the electrical and optical properties of the ZnO:(B,N) film is discussed in this work.  相似文献   

3.
Based on the easily controllable radio frequency magnetron sputtering, n-ZnO and i-MgO thin films were fabricated on p+-GaN substrate to construct heterojunctional light-emitting diodes for ultraviolet emission from the near band edge exciton recombination of ZnO. Effects of the insulator MgO layer on the electroluminescent performance of the n-ZnO/i-MgO/p+-GaN light-emitting diodes have been investigated. It was found that the light-emitting diode presented stronger near band-edge emission with blue shift emission peak under the lower working current when i-MgO layer was inserted. The fabrication process, characteristics and the mechanism were discussed in detail.  相似文献   

4.
B-N codoped p-type ZnO thin films have been realized by radio frequency (rf) magnetron sputtering using a mixture of argon and oxygen as sputtering gas. Types of conduction and electrical properties in codoped ZnO films were found to be dependent on oxygen partial pressure ratios in the sputtering gas mixture. When oxygen partial pressure ratio was 70%, the codoped ZnO film showed p-type conduction and had the best electrical properties. Additionally, the p-ZnO/n-Si heterojunction showed a clear p-n diode characteristic. XRD results indicate that the B-N codoped ZnO film prepared in 70% oxygen partial pressure ratio has high crystal quality with (0 0 2) preferential orientation. Meanwhile, the B-N codoped ZnO film has high optical quality and displays the stronger near band edge (NBE) emission in the temperature-dependent photoluminescence spectrum, the acceptor energy level was estimated to be located at 125 meV above the valence band.  相似文献   

5.
Field-effect transistors with n- and p-types of the channel on the base of ZnO:Li oxide films and MgF2 fluoride film as a gate insulator were prepared. The field effect as well as the UV radiation influence on the field effect in ZnO:Li thin films were investigated. Photoelectric characteristics of the obtained thin-film field-effect transistors were studied. A mechanism of photoelectric amplification in the obtained transistors is proposed.  相似文献   

6.
Phosphorus (P)-doped ZnO thin films with amphoteric doping behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering with various argon/oxygen gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio without post-annealing. The P-doped ZnO films grown at a argon/oxygen ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of 1.5 × 1017 cm−3 and 2.5 cm2/V s, respectively. X-ray diffraction showed that the ZnO (0 0 0 2) peak shifted to lower angle due to the positioning of P3− ions with a larger ionic radius in the O2− sites. This indicates that a p-type mechanism was due to the substitutional PO. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction light emitting diode showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.  相似文献   

7.
We examine the effects of the oxygen plasma pre-treatments on the material properties of n-ZnO grown on p-Si and characterize the electrical properties of n-ZnO/p-Si heterojunction diodes. The lattice spacing of ZnO becomes larger when the ZnO thin film is grown on the oxygen plasma pre-treated Si substrate. This might be relevant to the growth of (101) ZnO onto the ultra-thin SiO2 interfacial layer, which is formed during the oxygen plasma pre-treatment onto the Si substrate. The formation of SiO2 gives rise to the increase in the donor-like defect Zn interstitial, and the increased grain size improves the carrier mobility. Because of all the above, the differential conductance at the on-state is increased for the n-ZnO/p-Si heterojunction diode.  相似文献   

8.
The effects of deposition conditions on the physical and electrical performance of the n-ZnO/p-Si heterojunction were systematically investigated. ZnO films were deposited on the Si and glass substrates using direct current (DC) magnetron sputtering with various ambients and substrate temperatures. The results showed that increasing the O2 content and substrate temperature during the deposition process could improve the crystallinity and stoichiometry of the ZnO film, resulting in a lower carrier concentration and higher resistivity. The electrical properties of the n-ZnO/p-Si heterojunctions were also affected by the deposition parameters. For the junctions fabricated in the pure Ar ambient, the sample deposited at room temperature (RT) showed Ohmic behavior, while the one deposited at 300?°C exhibited poor rectifying behavior. On the other hand, the junctions fabricated in the O2/Ar ambient possessed ideal rectifying behaviors. The different carrier transport mechanisms for the heterojunctions under forward and reverse bias were systematically studied using a high temperature current–voltage (I-V) measurement. The recombination-tunneling current showed temperature insensitive performance while the space-charge limited current (SCLC) changed with the measurement temperature.  相似文献   

9.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

10.
Boron-doped nanocrystalline silicon thin films for solar cells   总被引:1,自引:0,他引:1  
This article reports on the structural, electronic, and optical properties of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films. The films were deposited by plasma-enhanced chemical vapour deposition (PECVD) at a substrate temperature of 150 °C. Crystalline volume fraction and dark conductivity of the films were determined as a function of trimethylboron-to-silane flow ratio. Optical constants of doped and undoped nc-Si:H were obtained from transmission and reflection spectra. By employing p+ nc-Si:H as a window layer combined with a p′ a-SiC buffer layer, a-Si:H-based p-p′-i-n solar cells on ZnO:Al-coated glass substrates were fabricated. Device characteristics were obtained from current-voltage and spectral-response measurements.  相似文献   

11.
Atomic layer deposition was used to grow n-type Al-doped ZnO (n-ZnO) and undoped ZnO (i-ZnO) layers on p-type 4H-SiC substrates, to fabricate n-ZnO/p-SiC and n-ZnO/i-ZnO/p-SiC heterojunction light-emitting diodes (LEDs). Electroluminescence (EL) from the n-ZnO/p-SiC LED originated from radiative recombination of donor–acceptor pairs in SiC due to the predominant electron injection from n-ZnO into p-SiC. On the other hand, the n-ZnO/i-ZnO/p-SiC LED exhibited dominant ultraviolet (UV) emission at 393 nm from ZnO. This difference is attributable to the insertion of the undoped i-ZnO layer between n-ZnO and p-SiC, leading to the injection of holes from p-SiC and electrons from n-ZnO into the i-ZnO layer and thus the generation of UV EL from ZnO.  相似文献   

12.
TiO2-ZnO nano-powders with different TiO2/ZnO ratios have been synthesized by hydrothermal method. Nanocomposite coating films consisting of TiO2-ZnO and Zn with thickness of 20 μm have been electrophoreted on steel plates by rapid plating from a ZnO-based alkaline bath. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis were used to investigate the structure, the size distribution, and the composition of prepared nano-powders and plated materials. The effect of the operating parameters such as powder contents, pH and current density on the electrophoresis process has been investigated and optimum conditions of coating process were determined. Corrosion properties of plated samples have been studied by salt spray test. The catalytic activity of the prepared nanocomposite Zn-TiO2-ZnO films for the photocatalytic degradation of 2-chlorophenol (2-CP) was measured.  相似文献   

13.
Ultraviolet (UV) electroluminescence (EL) of n-ZnO:Al (AZO)/i-layer/n-GaN heterojunctions with different intrinsic layers has been obtained. Rectifying behavior and EL spectra of the heterojunctions are investigated at room temperature. Under positive voltage, a dominant UV emission peak around ~370 nm is observed for both AZO/i-ZnO/n-GaN and AZO/i-MgO/n-GaN heterojunctions. Nevertheless, the UV emission peak intensity of AZO/i-MgO/n-GaN heterojunction is much stronger than that of AZO/i-ZnO/n-GaN heterojunction at the same voltage. The threshold voltage of AZO/i-MgO/n-GaN heterostructured device is as low as 2.3 V. The difference of EL spectra and the emission mechanism in these devices are discussed.  相似文献   

14.
This paper reports on the results of investigations into the photoconducting properties of amorphous molecular semiconductors based on films of two types: (i) poly(styrene) films doped with epoxypropylcarbazole (EPC) and a cationic polymethine dye (PD1) and (ii) poly(styrene) films doped with tetranitrofluorenone (TNF) and an anionic polymethine dye (PD2). Films of the first type possess p-type conductivity, whereas films of the second type exhibit n-type conductivity. It is found that, for films with n-type conductivity, unlike films with p-type conductivity, the activation energy of photogeneration of mobile charge carriers decreases with a decrease in the optical wavelength in the absorption range of the dyes. The possible mechanisms of the influence of the photoexcitation energy on the initial distance between charge carriers in electron-hole pairs are analyzed. The inference is made that, when the excess thermal energy of excited dye molecules dissipates at a low rate, the distance between the photogenerated electrons and photogeneration centers increases as compared to the distance between the photogenerated holes and photogeneration centers due to the electron-nucleus interaction.  相似文献   

15.
An attempt has been made to realize p-ZnO by directly doping (codoping) GaP into ZnO thin films. GaP codoped ZnO thin films of different concentrations (1, 2 and 4 mol%) have been grown by RF magnetron sputtering. The grown films on sapphire substrate have been characterized by X-ray diffraction (XRD), Hall measurement, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. XRD result shows that all the films have been preferentially oriented along (0 0 2) orientation. The decrease of full-width at half maximum (FWHM) with increase in GaP doping depicts the decrease in native donor defects. Hall measurement shows that among the three films, 2 and 4 mol% GaP doped ZnO shows p-conductivity due to the sufficient amount of phosphorous incorporation. It has been found that low resistivity (2.17 Ωcm) and high hole concentration (1.8×1018 cm−3) for 2% GaP codoped ZnO films due to best codoping. The red shift in near-band-edge (NBE) emission and donar-acceptor-pair (DAP) and neutral acceptor bound recombination (A°X) observed by room temperature and low temperature (10 K) PL, respectively, well acknowledged the formation of p-ZnO. The incorporated phosphorous in the film has been also confirmed by EDS analysis.  相似文献   

16.
Thin films of bismuth telluride have been prepared by the reactive evaporation method. Film properties, such as conductivity, Hall effect, and thermoelectric power were studied in the temperature range from liquid nitrogen to 350 K. The films prepared were of n-type with a carrier concentration of 1.25 x 1020 at room temperature. The temperature dependence of the Hall mobility is found to be T?1.8 indicating lattice scattering.  相似文献   

17.
The photo-current of n-ZnO/p-Si heterojunction photodiodes was improved by embedding Ag nanoparticles in the interface (ZnO/nano-PAg/p-Si), and the ratio between photo- and dark-current increased by about three orders more than that of a n-ZnO/p-Si specimen. The improvement in the photo-current resulted from the light scattering of embedded Ag nanoparticles. The IV curve of n-ZnO/p-Si degraded after thermal treatment (A-ZnO/p-Si) because the silicon robbed the oxygen from ZnO to form amorphous silicon dioxide and left an oxygen vacancy. Notably, the properties of ZnO/nano-PAg/p-Si were better in the time-dependent photoresponse under 10 V bias. Ag nanoparticles (15–20 nm) scattered the UV light randomly and increased the probability for the absorption of ZnO to enhance the properties of the photodiode.  相似文献   

18.
N-ZnO/Ga2O3/p-GaN heterojunction light-emitting diode (LED) was fabricated by metal-organic chemical vapor deposition. Compared with the n-ZnO/p-GaN structure, the deep level visible emission at 525?nm was completely suppressed while UV emission at ~392?nm was significantly improved in ZnO/Ga2O3/p-GaN structure. The role of Ga2O3 in n-ZnO/Ga2O3/p-GaN heterojunction LED was discussed in detail.  相似文献   

19.
Vertically aligned ZnO nanowires were successfully grown on the sapphire substrate by nanoparticle-assisted pulsed laser deposition (NAPLD), which were employed in fabricating the ZnO nanowire-based heterojunction structures. p-GaN/n-ZnO heterojunction light-emitting diodes (LEDs) with embedded ZnO nanowires were obtained by fabricating p-GaN:Mg film/ZnO nanowire/n-ZnO film structures. The current–voltage measurements showed a typical diode characteristic with a threshold voltage of about 2.5 V. Electroluminescence (EL) emission having the wavelength of about 380 nm was observed under forward bias in the heterojunction diodes and was intensified by increasing the applied voltage up to 30 V.  相似文献   

20.
Nanostructured bismuth sulfide thin films were prepared onto glass substrates with particle size of 21 nm by thermal evaporation using readily prepared bismuth sulfide nanocrystallite powder. The X-ray diffraction pattern revealed that bismuth sulfide thin films exhibit orthorhombic structure. The existence of quantum confinement effect was confirmed from the observed band gap energy of 1.86 eV. AC and DC electrical conductivity of Al/BiSnc/Al structures was investigated in the frequency range 0.5-100 kHz at different temperatures (303-463 K) under vacuum. The AC conductivity (σac) is found to be proportional to angular frequency (ωs). The obtained experimental result of the AC conductivity showed that the correlated barrier hopping model is the appropriate mechanism for the electron transport in the nanostructured bismuth sulfide thin films. DC conduction mechanism in these films was studied and possible conduction mechanism in the bismuth sulfide thin films was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号