首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X-ray diffraction on a langatate crystal (La3Ga5.5Ta0.5O14, LGT) modulated by a Λ=12 μm Rayleigh surface acoustic wave (SAW) was studied in a double axis X-ray diffractometer scheme at the BESSY synchrotron radiation source. SAW propagation in the crystal causes sinusoidal modulation of the crystal lattice and the appearance of diffraction satellites on the rocking curves, with their number, angular positions, and intensities depending on the wavelength and amplitude of acoustic vibrations of the crystal lattice. Strong absorption of X-ray radiation in LGT enables the observation of the diffraction spectra extinction at certain SAW amplitudes. X-ray diffraction spectra analysis makes it possible to determine SAW amplitudes and wavelengths, to measure the power flow angles, and investigate the diffraction divergence in acoustic beam in LGT.  相似文献   

2.
Liquid chromatography connected with mass spectroscopy reveals that the oxidized form of rubrene is the major impurity in commercial powder of rubrene as well as in rubrene single crystals. One form of rubrene impurity can be transformed into the other. In solution, rubrene undergoes photo-oxidation completely until the red color of the rubrene solution disappears. Single crystals, due to compact packing of molecules and the required molecular shape change during oxidation, oxidize only on the surface.  相似文献   

3.
Er3+ clustering phenomenon in Ga–Ge–S chalcogenide system is studied using Raman spectroscopy. The Raman spectra from 10 to 500 cm−1 for glasses (100−y)[15Ga2S3–85GeS2]–yEr2S3 (y=0.08−5.00 mol. %) have been analyzed. To reveal the influence of the chemical composition on the glass structure the intensity of the peak corresponding to Ge–Ge (Ga–Ga) homopolar bonds has been examined. The peak intensity increase with Er2S3 concentration change in the region 0<C(Er2S3)<2 mol. % has been interpreted in terms of the sulphur deficiency in the glass resulting in the formation of S3Ge–GeS3 (S3Ga-GaS3) structural units. The further increase in concentration beyond 2 mol. % reduces the sulphur deficiency, which can be attributed to the formation of the ternary compound Er3GaS6. The structural units Er3GaS6 contain a large mol. fraction of Er3+ or, in other words, Er3+ clusters. The data obtained from the low-frequency Raman spectra (boson band) indicate strong variations of the medium-range order (MRO) in the glasses induced by Er3+. The observed behavior of the MRO size (the correlation length) with increasing of Er2S3 concentration provides for additional evidence of the Er3+ clustering.  相似文献   

4.
Origin of the defect states at ZnS/Si interfaces   总被引:1,自引:0,他引:1  
Electrical characterisation of silicon surfaces contaminated by a zinc-sulphide overlayer has been carried out by forming Schottky diodes on the silicon after the ZnS has been etched off. The techniques include current-voltage, capacitance-voltage, and deep-level transieni spectroscopy. The Schottky diodes show clear memory of the presence of the ZnS overlayer and the electrical characteristics are far from ideal. Five deep levels in the sub-surface region of the silicon are detected, corresponding to the Zn+, Zn++, S, S–– states and probably to a Zn–B complex (p-type). Diffusion of the zinc and sulphur into the silicon is therefore confirmed and this diffusion is thought to create a compensated layer at the interface. These impurity states control the electrical characteristics of the surface in these diodes.  相似文献   

5.
We investigate the temperature-dependent polymorphs in diindenoperylene (DIP) thin films on sapphire and silicon oxide substrates using in situ X-ray scattering. On both substrates the DIP unit cell is very similar to the high-temperature phase of bulk crystals, with the substrate stabilising this structure well below the temperature where a phase transition to a low-temperature phase is observed in the bulk. Lowering the substrate temperature for DIP growth leads to a change in molecular orientation and an additional polymorph appears, with both these effects being more pronounced on sapphire as compared to silicon oxide. Using real-time reciprocal-space mapping we observe an expansion of the in-plane unit cell during DIP growth, which may be due to changes in molecular orientation as well as strain in the first monolayers. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

6.
By using two 4 detector systems for charged particles and neutrons, we measured the evaporated light particles emitted in coincidence with evaporation residues (ER) produced in the reaction32S+58Ni atE(32S) 820 MeV. From the analysis of the light particle multiplicities as a function of the ER velocity, we extracted the maximum excitation energy reached in fusion evaporation reactions for the studied system.Supported by the European Community Programme Human Capital and Mobility  相似文献   

7.
A 500 GeV center-of-mass International Linear Collider (ILC), currently under R&D development, is foreseen as the next-generation high-energy physics (HEP) instrument [1]. The achievement of a 31.5 MV/m average operational accelerating gradient in a single cryomodule is a proof of principle for the ILC project. However, individual cavity performance may have a large spread in operating gradients, up to 20% of the nominal value [2, 3]. In case of cavities performing below the average, the design parameters could be achieved by tweaking the RF distribution accordingly. We present a simple theoretical analysis of the ILC cryomodule operation with a gradient spread. The difference in the gradients breaks the synchronism of a transient processes in each cavity and causes nonuniform acceleration along the bunch train. A proper solution was found to maintain flattop operation of the accelerating module. Finally, we perform numerical efficiency estimations for the proposed RF distribution scheme based on real data of the gradient spread of actual cavities. The text was submitted by the authors in English.  相似文献   

8.
At the National Science Centre, Kharkiv Institute of Physics and Technology (NSC KIPT) the possibility of creating an installation with a subcritical reactor driven by an electron accelerator is examined. To obtain the maximal stream of neutrons from a neutron-producing target at a minimal density of energy emission, the electron energy should be in the range of 100–200 MeV and the size of the target should be as large as possible. Other important requirements are beam continuity with time and long-term stability of the accelerator parameters. The variants of using the superconducting linear accelerator on the basis of a TESLA accelerating structure as of subcritical reactor driver are considered. The basic design parameters and characteristics of this installation are presented. The text was submitted by the authors in English.  相似文献   

9.
10.
For the first time nanocrystalline magnetic particles of Mg x Fe(3−x)O4 with x ranging from 0.5 to 1.5 have been synthesized by a combustion reaction method using iron nitrate Fe(NO3)3.9H2O, magnesium nitrate Mg(NO3)2.6H2O, and urea CO(NH2)2 as fuel without intermediate decomposition and/or calcining steps. X-ray diffraction patterns of all systems showed broad peaks consistent with cubic inverse spinel structure of MgFe2O4. The absence of extra reflections in the diffraction patterns of as-prepared materials ensures the phase purity. The mean crystallite sizes determined from the prominent (311) peak of the diffraction using Scherrer’s equation and transmission electron microscopy micrographs were c.a. 40 nm with spherical morphology. Fourier transform infrared spectra of the as-prepared material showed traces of organic and metallic salt by-products; however, these could be removed by washing with deionized water. Typical hysteresis curves were obtained for all specimens in magnetic field up to 14 T between 4 and 340 K. The saturation magnetization was 48.3 emu/g and 31.3 emu/g, 44.8 emu/g, and 28.4 emu/g for x=1.0 and 0.8 at 4 K and 340 K, respectively. The saturation magnetization, M s , of nanoparticles of the MgFe2O4 specimen is about 50% higher when compared to the bulk. The enhanced magnetization measured in our nanoparticles MgFe2O4 specimens may be attributed to the uncompensated magnetic moment of iron ions between the A- and B-sites, i.e., changes in the inversion factor. Our magnetization results of MgFe2O4 specimens are comparable to the existing data for the same compound but with different particle size and prepared by different synthesis methods.  相似文献   

11.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

12.
Summary  Iron molybdenum phosphate glasses [xMoO3 · (0.6 -x)P2O5 · 0.4Li2O] :yFe2O3 with 0 ≤x ≤ 0.6 andy = 0.03 (mol%) prepared in ambient atmosphere using the melt quenching technique were studied by using DC electrical conductivity,57Fe M?ssbauer and infrared spectroscopies. The DC conductivity depends on the MoO3 concentrationx. It was observed that, with increasingx, the ratio Fe2+ /(Fe3+ + Fe2+) and the DC conductivity increase. Infrared spectroscopy and X-ray powder diffraction indicate that a Li2 MoO4 crystalline phase is present for high MoO3 content samples (x = 0.5, 0.6). This work was partly sponsored by FINEP, CNPq (Brazilian agencies) and UECE (Universidade Estadual do Cearà).  相似文献   

13.
We demonstrate that graphene-based transparent and conductive thin films (GTCFs), fabricated by thermal reduction of graphite oxide, have very similar electronic and structural properties as highly oriented pyrolytic graphite (HOPG). Electron spectroscopy results suggest that the GTCFs are also semi-metallic and that the individual graphene sheets of the film are predominantly oriented parallel to the substrate plane. These films may therefore be considered as a technologically relevant analogue to HOPG electrodes, which cannot be easily processed into thin films.  相似文献   

14.
We have employed a combination of experimental surface science techniques and density functional calculations to study the reduction of TiO2(110) surfaces through the doping with submonolayer transition metals. We concentrate on the role of Ti adatoms in self doping of rutile and contrast the behaviour to that of Cr. DFT+U calculations enable identification of probable adsorption structures and their spectroscopic characteristics. Adsorption of both metals leads to a broken symmetry and an asymmetric charge transfer localised around the defect site of a mixed localised/delocalised character. Charge transfer creates defect states with Ti 3d character in the band gap at ∼1-eV binding energy. Cr adsorption, however, leads to a very large shift in the valence-band edge to higher binding energy and the creation of Cr 3d states at 2.8-eV binding energy. Low-temperature oxidation lifts the Ti-derived band-gap states and modifies the intensity of the Cr features, indicative of a change of oxidation state from Cr3+ to Cr4+. Higher temperature processing leads to a loss of Cr from the surface region, indicative of its substitution into the bulk.  相似文献   

15.
The main goal of this paper is to investigate the electronic structure of valence band and core levels as well as surface topography of pristine tetraphenylporphyrin and Pt-based compounds Pt-TPP(p-COOH3)4, Pt-TPP(m-OCH3)4, PtCl2-TPP(m-OCH3)4 thin films. The electronic structure of various Pt-based metalloporphyrins which were investigated in dependence on their chemical structure and spectra were measured by high-resolution X-ray photoelectron spectroscopy (XPS) of valence band and Pt4f, Pt4d, C1s, O1s, N1s core levels. Results of atomic force microscopy (AFM) studies of topography and self-assembling processes in thin films of porphyrines are presented and discussed.  相似文献   

16.
While studying the effect of thermal treatment at 625–700°C on the formation of borosilicate glass-embedded CdSe or CdSe1−x S x nanocrystals, pronounced bands at 323 and 646 cm−1 were observed in the Raman spectra. They are assigned to Se2 clusters on the base of their frequency positions, widths, intensities, and resonance behavior. The precipitation of Se2 molecular clusters in borosilicate glass is shown to occur when the heat treatment temperature and/or duration are beyond the range, most suitable for the formation of CdSe or CdSe-rich CdSe1−x S x nanocrystals.  相似文献   

17.
18.
In intermediate energy heavy ion collision prompt particles emitted in the early stages of the reaction affect the properties of the incompletely fused composite. We have studied the entrance channel effects on preequilibrium proton emission and various observables, like temperature, residual velocity, and linear momentum transfer of the incompletely fused residue, in the framework of Promptly Emitted Particle (PEP) model. The calculated preequilibrium proton energy spectra for Oxygen and Sulphur induced reactions on various targets have been confronted with the respective experimental data and the agreement between the two has been found to be quite satisfactory. Proton multiplicity has been found to decrease/increase with the increase in target/projectile mass. Residual velocity and linear momentum transfer have been found to have weak dependance on target mass. With the increase in incident energy, the calculation predicts a tendency towards limiting the temperature of the residue for all the target masses. The limiting temperature has been found to decrease with increase in the mass of the residue which is in accordance with the experimental observations.One of the authors (S.D) is thankful to R. Auble and his collaborators at Oak Ridge National Laboratory, for providing the experimental data. The authors would also like to thank Dr. S.K. Basu for his help in running the code PACE2.  相似文献   

19.
The data of fission fragment anisotropies measured for the system16O +209Bi in the centre of mass energy region of 73 to 95 MeV have been compared with the saddle point statistical model calculations. The corrections to the nuclear temperature and the spin distribution arising due to pre-fission neutron emission have been made. While the resultant calculations reproduce very well the data in the near- and sub-barrier energy regions, they deviate from the data at higher energies. This observation is similar to what was already reported for16O +208Pb system.  相似文献   

20.
In the formation of a compound nucleus the evolution of a dinuclear system is considered. The enhanced yield of light particles for some reactions is explained by the dynamic reasons. The role of quantum and thermal fluctuations is discussed. The results of the previous paper are confirmed.Authors wish to thank Prof. V.V. Volkov for his active attention and comments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号