首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
AlN nanocrystals were prepared in organic solvent at atmospheric pressure and low temperature by the Schlenk technique. Both hexagonal and cubic AlN nanocrystals were obtained. The hexagonal nano-AlN powder possessed a wurtzite structure with a=3.124 Å, c=5.024 Å, the average grain size was about 2 nm. The lattice constant of the cubic nano-AlN was a=9.171 Å, the average grain size was about 4 nm. The structural and optical properties of the obtained AlN were analyzed. The emission related to deep-level defects was investigated by using temperature-dependent photoluminescence.  相似文献   

2.
ZnO:In films are successfully prepared by using the electrostatic spray deposition technique. X-ray diffraction indicates that the ZnO:In films have a polycrystalline hexagonal wurtzite structure with lattice parameters a=3.267 Å and c=5.209 Å. Photoluminescence properties of the films are investigated in the temperature range of 11.6-300 K, showing strong luminescence in the whole range of temperature. The temperature dependence of the photoluminescence are carried out with full profile fitting of spectra, which clearly shows that the ultraviolet (UV) emission in In-doped ZnO films at low temperature are attributed to emission of a neutral donor-bound exciton (D°X) and recombination of donor-acceptor pairs (DAP), while the UV emission at room temperature originates from radiative transition of an electron bound on a donor to the valence band.  相似文献   

3.
C60/C70 crystal surfaces were imaged by atomic force microscopy under ethanol with resolution of single molecules. Spherical and elongated elliptical fullerenes can be distinguished corresponding most likely with C60, respectively C70. Determination of the maximum diameter for a large number of molecules confirms the presence of two species of fullerenes, one with 9.4 Å, the other with 11.2 Å. The measured ratio C60:C70 is 81:19 which resembles the spectroscopical data. The molecules are arranged either in hexagonal (hcp) or cubic (fcc) packing, in some areas the two arrangements alternate within a few nm. Elongated fullerenes apparently prefer the hexagonal packing.  相似文献   

4.
We present the first experimental demonstration of spatially resolved photon emission of individual molecules on a surface. A scanning tunneling microscope (STM) was used as a local electron source to excite photon emission from hexagonal arrays of C60 molecules on Au(110) surfaces. Specifically, we show that in maps of photon emission intensities, C60 fullerenes appear as arrays of individual light emitters 4 Å in diameter and separated by 10 Å. Comparison with simultaneously recorded STM images reveals, that most intense emission is detected when the STM tip is centered above a molecule. The results demonstrate the highest spatial resolution of light emission to date using a scanning probe technique.  相似文献   

5.
Kinetic and standard Monte Carlo (kMC and sMC) simulation of the system, where a pair-interaction energy is an oscillatory function of interatomic distance, requires a very careful selection of a cutoff radius rcut of the pair-interactions. As an example, the homoepitaxy of Cu on Cu(1 1 1) is investigated. The surface-state mediated interaction between the Cu adatoms has a very long range and oscillates between attraction and repulsion as a function of the adatom-adatom distance. The simulations reveal that, at 15 K and 0.03 monolayer coverage, the Cu adatoms self-assemble into a dilute nanostructure with a weak local hexagonal order, where the average separation between adatoms equals 11.7 Å. The nanostructure consists of islands and chains of adatoms. The simulated structure of adlayer surprisingly strongly depends on the cutoff radius applied to the Monte Carlo model. The tendency to the dilute island formation strengthens and weakens with the same periodicity vs. rcut as the pair-interaction energy vs. interatomic distance. The submonolayer morphology stabilizes when rcut becomes longer than 50 Å.  相似文献   

6.
M-type strontium hexaferrite (SrFe12O19) particles had been prepared by a modified chemical co-precipitation route. Structural and magnetic properties were systematically investigated. Rietveld refinement of X-ray powder diffraction results showed that the sample was single-phase with the space group of P63/mmc and cell parameter values of a=5.8751 Å and c=23.0395 Å. The results of field-emission scanning electronic microscopy showed that the grains were regular hexagonal platelets with sizes from 2 to 4 μm. The composition determined by energy dispersive spectroscopy is the stoichiometry of SrFe12O19. The ferrimagnetic to paramagnetic transition was sharp with Curie temperature TC=737 K, which further confirmed that the samples were single phase. However, it was found that the coercivity, saturation magnetization and the squareness ratio of the synthesized SrFe12O19 samples were lower than the theoretical values, which could be explained by the multi-domain structure and the increase of the demagnetizing factor.  相似文献   

7.
The monolayer hydrate (MLH) K0.3CoO2·0.4H2O was synthesized from K0.6CoO2 by extracting K+ cations using K2S2O8 as an oxidant and the subsequent intercalation of water between the layers of edge-sharing CoO6 octahedra. A hexagonal structure (space group P63/mmc) with lattice parameters a=2.8262(1) Å, c=13.8269(6) Å similar to the MLH Na0.36CoO2·0.7H2O was established using high-resolution synchrotron X-ray powder diffraction data. The K/H2O layer in the K-MLH is disordered, which is in contrast to the Na-MLH. At low temperatures metallic and paramagnetic behavior was found.  相似文献   

8.
Vapor grown crystals of C60 with thin flat triangular, rhombic or trapezoidal shapes of size to 1×2×0.001 mm as well as prismastic crystals typically 0.5×0.4×0.2 mm have been grown using a high temperature vapor transport method. Room temperature X-ray precession photography shows these crystals exhibit diffraction patterns consistent with those for either (a) single or (b) twinned crystals of the previously reported face-centered cubic structure or (c) a more complex cell of hexagonal symmetry with a=10.010(2) Å and c=49.064(11) Å. This latter from actually is a multiple twin containing both the face-centered cubic and the close-packed hexagonal structure types. The sharp diffraction maxima for either the single or the twinned crystals demonstrate that they consist of large coherent domains and are essentially free of planar defects parallel to the twin planes.  相似文献   

9.
Y. Maehara 《Surface science》2006,600(18):3575-3580
Phase transitions of K on Mo(1 1 0) have been studied by RHEED technique. As Ba and Cs structures on the bcc(1 1 0) surface, surface structures of K were hexagonal from RT to 250 °C for θ > 0.9 ML. The hexagonal structure successively expanded from α to γ structure with Nishiyama-Wassermamm (N-W) orientation relationship. The nearest neighbor spacing in the α structure at RT was 4.50 Å, which is very closed to the atomic distance of K in metal, and stretched to 5.14 Å in the γ structure at T = 200 °C. At temperatures greater than T = 250 °C, the γ structure oriented in N-W and Kurdjumov-Sachs (K-S) relationships at the same time and stayed up to the temperature of 450 °C. These two orientations of γ structure also appeared in all temperature range for 0.4 < θ < 0.9 ML.  相似文献   

10.
Structural, elastic and electronic properties of ReO2 are investigated by first-principles calculations based on density functional theory. The ground stateof ReO2 has an orthorhombic symmetry which belongs to space group Pbcn with a=4.7868Å b=5.5736Å, and c=4.5322Å. The calculated bulk moduli are 322GPa, 353GPa, and 345GPa for orthorhombic, tetragonal, and monoclinic ReO2, respectively, indicating that ReO2 has a strong incompressibility. ReO2 is a metal ductile solid and presents large elastic anisotropy. The obtained Debye temperatures are 850K for orthorhombic, 785K for tetragonal, and 791K for monoclinic ReO2.  相似文献   

11.
A Li hexagonal boron nitride (hBN) intercalation compound (Li-hBNIC) was successfully synthesized by the annealing of powder or bulk hBN and Li at 1523 K. By an XRD analysis, a strong peak indicating the expansion of BN interlayer distance due to Li-intercalation was observed at an angle lower than that of hBN (0 0 2). In the sample, the interlayer distance and its expansion ratio were 3.76 Å and 12.6%, respectively, and these values were similar to those of a first stage Li-graphite intercalation compound (Li-GIC), LiC6. The electrical conductivity of the sample was increased by several orders of magnitude, from 10−15 to 10−7 Ω−1 cm−1 at room temperature. Li de-intercalation was confirmed by the dispersion of the sample in purified water.  相似文献   

12.
In a temperature dependent neutron powder diffraction (NPD) study we observed the high temperature cubic phase at 973 K in the polycrystalline double perovskite Sr2MnWO6. Rietveld analysis of the NPD data shows that the room temperature tetragonal phase exists up to 573 K (space group P42/n, a=8.0119 (4) Å, c=8.0141(8) Å). At 773 K, the primitive tetragonal symmetry change to body-centred tetragonal (space group I4/m, a=5.6935(5) Å, c=8.077(1) Å) and finally at 973 K it becomes face-centred cubic (space group Fm-3m, a=8.0864(8) Å). The changes in the structural symmetry are connected to the small distortion of the B-site octahedra, which are insensitive to the Differential Thermal Analysis (DTA) signal.  相似文献   

13.
Equilibrium pressures of protium and deuterium desorption over a two-phase area of monohydride-vanadium dihydride were measured. Temperature measurement range was 300–635 K and the pressure range 1–500 MPa. Obtained temperature-dependences of fugacities within the given measurement range are: lgf(MPa) = −2152/T+ 6.6 and lgf(MPa) = −2575/T + 7.4 for protium and deuterium, respectively. The values of enthalpy and entropy for vanadium dihydride phase formation were calculated from obtained relations. Using expressions obtained for fugacities and literature data on hydrogen imperfection the pressures, which can be obtained with vanadium dihydride employed in thermodesorption hydrogen sources, were estimated. Taking into account that due to deterioration in strength properties of the used structural materials, the heating temperature of the load-bearing body is limited to ∼973 K, maximal calculated pressure, which can be obtained with such sources as ≈1820 MPa for protium and ≈2220 MPa for deuterium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Chromium(II) sulfide, Y2CrS4, prepared by a solid-state reaction of Y2S3 and CrS, showed an antiferromagnetic transition at 65 K. The neutron diffraction patterns at 10 and 90 K were both well refined with the space group Pca21. At 90 K, cell parameters were a=12.5518(13) Å, b=7.5245(8) Å, and c=12.4918(13) Å. At 10 K, magnetic peaks were observed, which could be indexed on the same unit cell. Magnetic moments of chromium ions were parallel to the b-axis and antiferromagnetically ordered in each set of the 4a sites.  相似文献   

15.
We predict an accepted configuration of hexagonal boron nitride (BN) layer on Co(111) surface by first-principles calculations. The calculated adsorption energy of this configuration is around −0.51 eV with a corrugation close to 0.1 Å. Polarized spin states are induced in BN layer due to the hybridization of the BN layer with the substrate Co, which gives rise to a magnetic moment of 0.2 μB on each pair of BN. The finding of high spin polarization on the absorbed BN layer ensures a high degree of passage of the preferred spin and is important in the development of nanoscale devices for spintronics applications.  相似文献   

16.
Angle dispersive X-ray diffraction experiments on mercuric bromide (HgBr2) under high pressure up to 11.0 GPa were carried out at room temperature using synchrotron radiation. In addition to the already known four different phases of HgBr2 in the pressure-temperature range of p<4.5 GPa, 90<T<600 K our observations show the existence of a new phase (V) above 9.0 GPa and, together with published material, support the phase transition sequence: (I) orthorhombic-(II) orthorhombic-(III) monoclinic-(IV) trigonal-(V) trigonal/hexagonal. The structure of phase IV with space group symmetry P3 has been determined from powder diffraction data. The observation of second-harmonic-generation signals confirms the absence of an inversion center. The structure of phase IV is a commensurately modulated variant of the CdI2 type layer structure, where part of the Hg atoms are displaced from the centers of the HgBr6 octahedra by a much as 0.76 Å in the direction perpendicular to the layers.  相似文献   

17.
A new type of Co-C nanoparticles is synthesized from CH2Cl2 solution of Co4(CO)1 2 by heating up to 210 °C in a closed vessel. Transmission electron microscope (TEM) and electron energy loss spectroscopy (EELS) observation show that the particles are embedded in amorphous carbon and their average size is 12 nm. The radial structure function obtained from the extended X-ray absorption fine structure (EXAFS) of the Co K-edge absorption of the Co-C nanoparticles provides a Co-C average distance of 2.08 Å and the Co-Co distances of 3.18 Å and 3.9 (±0.2) Å. The particles exhibit the magnetic hysteresis curve with a coercive force of 200 Oe at 20 K and 260 Oe at 300 K. The temperature dependence of the magnetic susceptibility measured under zero-field cooling and 10 Oe field cooling conditions exhibits the behavior characteristic of a set of single magnetic domain nanomagnets in an amorphous carbon matrix.  相似文献   

18.
 The crystal structure of a layered ternary carbide, Ti3(Si0.43Ge0.57)C2, was studied with single-crystal X-ray diffraction. The compound has a hexagonal symmetry with space group P63/mmc and unit-cell parameters a=3.0823(1) Å, c=17.7702(6) Å, and V=146.21(1) Å3. The Si and Ge atoms in the structure occupy the same crystallographic site surrounded by six Ti atoms at an average distance of 2.7219 Å, and the C atoms are octahedrally coordinated by two types of symmetrically distinct Ti atoms, with an average C-Ti distance of 2.1429 Å. The atomic displacement parameters for C and Ti are relatively isotropic, whereas those for A (=0.43Si+0.57Ge) are appreciably anisotropic, with U11 (=U22) being about three times greater than U33. Compared to Ti3SiC2, the substitution of Ge for Si results in an increase in both A-Ti and C-Ti bond distances. An electron density analysis based on the refined structure shows that each A atom is bonded to 6Ti atoms as well as to its 6 nearest neighbor A site atoms, whether the site is occupied by Si or Ge, suggesting that these bond paths may be significantly involved with electron transport properties.  相似文献   

19.
Surface enhanced Raman scattering (SERS) from samples prepared by spreading para-nitrobenzoic acid (PNBA) and adenosine powders over silver thin films was achieved. The SERS intensities of the ionized PNBA on the silver film increase with increased applied pressure through a cover-glass and reach a maximum at 0.6 MPa. In contrast, the signals caused by adenosine remain nearly unchanged under applied pressures of 0-0.6 MPa. Beyond 0.6 MPa, the signals attributable to samples decrease in intensity. Atomic force microprobe images reveal that nanometer-scale surface morphology is changed by 0.8 MPa pressure, suggesting that the decrease in SERS intensity is related to pressure-induced morphological changes. Results obtained in this study indicate that SERS spectra are obtainable easily, without solvents, under ambient conditions using dispersion of the sample powder.  相似文献   

20.
A novel mixed cadmium zirconium cesium oxalate with an open architecture has been synthesized from precipitation methods at room pressure. It crystallizes with an hexagonal symmetry, space group P3112 (no. 151), a=9.105(5) Å, c=23.656(5) Å, V=1698(1) Å3 and Z=3. The structure displays a [CdZr(C2O4)4]2− helicoidal framework built from CdO8 and ZrO8 square-based antiprisms connected through bichelating oxalates, which generates channels along different directions. Cesium cations, hydronium ions and water molecules are located inside the voids of the anionic framework. They exhibit a dynamic disorder which has been further investigated by 1H and 133Cs solid-state NMR. Moreover a phase transition depending both upon ambient temperature and water vapor pressure was evidenced for the title compound. The thermal decomposition has been studied in situ by temperature-dependent X-ray diffraction and thermogravimetry. The final product is a mixture of cadmium oxide, zirconium oxide and cesium carbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号