首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a [2]rotaxane molecule that exhibits distinct signals in its (1)H NMR spectra upon the complexation of physiologically important Li(+), Na(+), Mg(2+) and Ca(2+) ions; thus, the identification of these metal ions in solution is possible from the analysis of a single (1)H NMR spectrum of a single molecular sensor.  相似文献   

2.
Kinetically stable metallocycle-based molecular shuttles of [2]rotaxanes 4a and 4b, along with [3]rotaxanes 5a and 5b, have been prepared using the rhenium(I)-bridged metallocycle 2 and the dumbbell components containing two stations, 3a and 3b. The rotaxanes were self-assembled by hydrogen bonding interactions upon heating a Cl(2)CHCHCl(2) solution containing their components at 70 degrees C. Each rotaxane was isolated in pure form by silica gel chromatography under ordinary laboratory conditions and fully characterized by elemental analysis and various spectroscopic methods. The (1)H NMR signals for the amide NH and the methylene -(CH(2))(4)- of the station were considerably changed when occupied by the metallocycle. In [2]rotaxane 4b, which has a larger naphthyl spacer, the occupied and unoccupied stations gave widely separated signals in the (1)H NMR spectroscopy at room temperature, but averaged signals of two stations were observed in [2]rotaxane 4a, which has a smaller phenyl spacer. This is attributed to the shuttling of the metallocycle between two stations. The coalescence temperature experiment gave a shuttling rate of approximately 670 s(-)(1) at 19 degrees C in CDCl(3), corresponding to an activation free energy (DeltaG()) of 13.3 kcal/mol. With respect to the relative position of the chloride in the rhenium(I) center, two diastereomers are possible in the [2]rotaxane and three diastereomers are possible in the [3]rotaxane. In fact, the rotaxanes exist as diastereomeric mixtures in nearly equal amounts of all possible diastereomers on the basis of the amide NH signals of the station in the (1)H NMR spectroscopy.  相似文献   

3.
A host-[2]rotaxane was constructed by converting a diaminophenylcalix[4]arene into a [2]rotaxane using the DCC-rotaxane method (Zehnder, D.; Smithrud, D. B. Org. Lett. 2001, 16, 2485-2486). N-Ac-Arg groups were attached to the dibenzo-24-crown-8 ring of the rotaxane to provide a convergent functional group. To demonstrate the advantage provided by the rotaxane architecture for recognition of guests that contain a variety of functional groups, association constants (K(A)) for N-Ac-Trp, indole, N-Ac-Gly, fluorescein, 1-(dimethylamino)-5-naphthalenesulfonate, and pyrene bound to the [2]rotaxane were determined by performing (1)H NMR and fluorescence spectroscopic experiments. The host-[2]rotaxane had the highest affinity for fluorescein with a K(A) = 4.6 x 10(6) M(-)(1) in a 98/2 buffer (1 mM phosphate, pH 7)/DMSO solution. A comparison of K(A) values demonstrates that both the aromatic pocket and ring of the host-[2]rotaxane contribute binding free energy for complexation. Association constants were also derived for the same guests bound to the diaminophenylcalix[4]arene and to a diphenylcalix[4]arene that contained arginine residues displayed in a nonconvergent fashion. The host-[2]rotaxane provides higher affinity and specificity for most guests than the host with divergent N-Ac-Arg groups of the one that only has an aromatic pocket. For example, the K(A) for the complex of the host-[2]rotaxane and fluorescein in the DMSO/water mixture is more than 2 orders of magnitude greater than association constants derived for the other hosts.  相似文献   

4.
A [3]rotaxane molecular shuttle containing two alpha-cyclodextrin (alpha-CD) macrocycles, an azobenzene unit, a stilbene unit, and two different fluorescent naphthalimide units has been investigated. The azobenzene unit and the stilbene unit can be E/Z-photoisomerized separately by light excited at different wavelengths. Irradiation at 380 nm resulted in the photoisomerization of the azobenzene unit, leading to the formation of one stable state of the [3]rotaxane (Z1-NNAS-2CD); irradiation at 313 nm resulted in the photoisomerization of the stilbene unit, leading to the formation of another stable state of the [3]rotaxane (Z2-NNAS-2CD). The reversible conversion of the Z1 and Z2 isomers back to the E isomer by irradiation at 450 nm and 280 nm, respectively, is accompanied by recovery of the absorption and fluorescence spectra of the [3]rotaxane. The E isomer and the two Z isomers have been characterized by 1H NMR spectroscopy and by two-dimensional NMR spectroscopy. The light stimuli can induce shuttling motions of the two alpha-CD macrocycles on the molecular thread; concomitantly, the absorption and fluorescence spectra of the [3]rotaxane change in a regular way. When the alpha-CD macrocycle stays close to the fluorescent moiety, the fluorescence of the moiety become stronger due to the rigidity of the alpha-CD ring. As the photoisomerization processes are fully reversible, the photo-induced shuttling motions of the alpha-CD rings can be repeated, accompanied by dual reversible fluorescence signal outputs. The potential application of such light-induced mechanical motions at the molecular level could provide some insight into the workings of a molecular machine with entirely optical signals, and could provide a cheap, convenient interface for communication between micro- and macroworlds.  相似文献   

5.
The preparation of intelligent-responsive materials with controllable topology structure has long been a significant objective for chemists in the field of materials science. In this paper, we designed and prepared a linear-cyclic reversible topological structure polymer based on the bistable [1]rotaxane molecular shuttle. A ferrocene-functionalized [1]rotaxane and naphthalimide fluorophore group are introduced into the both ends of the polymer, which exhibit distance-induced photo-electron tran...  相似文献   

6.
This paper describes the self-assembly of a heterosupramolecular system consisting of a tripodal [2]rotaxane adsorbed at the surface of a titanium dioxide nanoparticle. The tripodal [2]rotaxane consists of a dumbbell-shaped molecule, incorporating two electron-poor viologens, threading an electron-rich crown ether. The [2]rotaxane also incorporates a bulky tripodal linker group at one end and a bulky stopper group at the other end. The [2]rotaxane is adsorbed, via the tripodal linker group, at the surface of a titanium dioxide nanoparticle. The structure and function of the resulting hetero[2]rotaxane have been studied in detail by (1)H NMR spectroscopy and cyclic voltammetry. A key finding is that it is possible to electronically address and switch the above hetero[2]rotaxane.  相似文献   

7.
A bis‐branched [3]rotaxane, with two [2]rotaxane arms separated by an oligo(para‐phenylenevinylene) (OPV) fluorophore, was designed and investigated. Each [2]rotaxane arm employed a difluoroboradiaza‐s‐indacene (BODIPY) dye‐functionalized dibenzo[24]crown‐8 macrocycle interlocked onto a dibenzylammonium in the rod part. The chemical structure of the [3]rotaxane was confirmed and characterized by 1H and 13C NMR spectroscopy and high‐resolution ESI mass spectrometry. The photophysical properties of [3]rotaxane and its reference systems were investigated through UV/Vis absorption, fluorescence, and time‐resolved fluorescence spectroscopy. An efficient energy‐transfer process in [3]rotaxane occurred from the OPV donor to the BODIPY acceptor because of the large overlap between the absorption spectrum of the BODIPY moiety and the emission spectrum of the OPV fluorophore; this shows the important potential of this system for designing functional molecular systems.  相似文献   

8.
Two strategies for the design of new pillar[5]arene-based mechanically self-interlocked molecules (MSMs) are reported here. The first strategy is based on the construction of an intermediate pseudo[1]rotaxane followed by the desired bis-[1]rotaxane. The other one is based on the construction of the desired bis-[1]-rotaxane directly via a condensation reaction through host-guest interactions between a mono-functionalized pillar[5]arene and the axle. This compound has interesting self-assembly properties in methanol and some extended applications of this compound will be reported in the near future.  相似文献   

9.
The threading of an alpha-cyclodextrin (alpha-CyD) by an unsymmetrical dumbbell generally results in two isomeric [2]rotaxanes differing in the orientation of the alpha-CyD. In this work, two methods have been developed for the unidirectionally threading an alpha-CyD to obtain isomer-free [2]rotaxanes. These methods use the Suzuki coupling of a boronic acid derivative and a halide in aqueous alkaline solution. The conformations of the two unidirectional [2]rotaxanes-R3 and R4 were determined by 2D 1H ROESY NMR spectra. The optical spectral studies revealed that each of the two [2]rotaxanes can proceed with E/Z photoisomerization and shuttling motions of the alpha-CyD ring on the thread under alternating irradiation at 330 and 275 nm, accompanied by fluorescence intensity changes at 530 nm. The induced circular dichroism (ICD) spectra of another two analogous [2]rotaxanes R1 and R2 were also studied. Distinctive ICD signal changes resulting from the photoisomerization with respect to the movements of alpha-CyD were detected. This demonstrates that, besides the fluorescence, ICD signal is another way to identify the shuttling motions of alpha-CyD in these [2]rotaxanes.  相似文献   

10.
For the purpose of developing higher level mechanically interlocked molecules (MIMs), such as molecular switches and machines, a new rotaxane system was designed in which both the 1,2‐bis(pyridinium)ethane and benzimidazolium recognition templating motifs were combined. These two very different recognition sites were successfully incorporated into [2]rotaxane and [3]rotaxane molecular shuttles which were fully characterized by 1H NMR, 2D EXSY, single‐crystal X‐ray diffraction and VT NMR analysis. By utilizing benzimidazolium as both a recognition site and stoppering group it was possible to create not only an acid/base switchable [2]rotaxane molecular shuttle (energy barrier 20.9 kcal?mol?1) but also a [3]rotaxane molecular shuttle that displays unique dynamic behavior involving the simultaneous motion of two macrocyclic wheels on a single dumbbell. This study provides new insights into the design of switchable molecular shuttles. Due to the unique properties of benzimidazoles, such as fluorescence and metal coordination, this new type of molecular shuttle may find further applications in developing functional molecular machines and materials.  相似文献   

11.
1H NMR spectra and fluorescence analysis revealed that the molecular shuttle and pseudorotaxane assembly of Q[7] with guest G2+ can be significantly switched via protonation and deprotonation of the terminal carboxylates of the guest.  相似文献   

12.
An already well-established recognition motif-namely one in which the NH2+ centers in the rod sections of the dumbbell components of rotaxanes are encircled by macrocyclic polyether components-has been turned simultaneously outside-in and inside-out, a fact that has been proved beyond any doubt by the stoppering of both ends of a [2]pseudorotaxane to give a stable [2]rotaxane. The [2]pseudorotaxane is formed in nitromethane when a benzylic dibromide, obtained after reacting an excess of 1,4-bis(bromomethyl)benzene with hexaethylene glycol, is added to an equimolar amount of a dicationic cyclophane in which two -CH2OCH2- chains link a pair of dibenzylammonium ions through the para positions on their phenyl rings. When the [2]pseudorotaxane is reacted in nitromethane with triphenylphosphine, a [2]rotaxane and the corresponding free dumbbell compound are isolated in 58 and 31% yields, respectively. The structure of the [2]rotaxane is established by using mass spectrometry (FABMS and ESMS) and NMR (1H and 13C) spectroscopy in nitromethane-d3. The [2]rotaxane exhibits quite dramatic changes in the 1H chemical shifts of the signals for its CH2N+ and CH2O protons compared with those in the free dumbbell compound. The 1H NMR spectrum of the [2]pseudorotaxane shows many similar features. Titration experiments with three of the six different CH2O probes give an average Ka value of 2900 +/- 750 M-1 in nitromethane-d3. The new recognition motif for the template-directed synthesis of rotaxanes can now be exploited at both the molecular and macromolecular levels of structure with numerous potential applications in sight.  相似文献   

13.
In this work, a new [2]rotaxane consisted of a diazobenzene containing π-conjugated linear compartment, including the 4,4′-bipyridyl moiety and α-cyclodextrin (α-CD) as the macrocyclic compartment, was synthesised with yields of nearly 57% and fully characterised. α-CD easily assembled with the linear compartment and suitable bulky ends (stoppers) in water to give a new [2]rotaxane. The characterisation of this supramolecular compound was accomplished using several spectroscopic techniques such as 1H NMR, 13C NMR and 2D NMR spectroscopy, powder X-ray diffraction, fourier transform infrared spectroscopy, induced circular dichroism and UV–vis spectrophotometry, as well as scanning electron microscopy and Energy Dispersive X-ray. Furthermore, the reversible E–Z photoisomerisation of both [2]rotaxane and its molecular dumbbell was investigated by irradiation with UV light.  相似文献   

14.
The photophysical properties of a multicomponent [1]rotaxane bearing a β‐cyclodextrin ring covalently connected to an axle comprising an azobenzene photoisomerisable moiety and a naphthalimide‐type fluorescent stopper are investigated by a combined experimental and computational study. The absorption and fluorescence spectra, and particularly the induced circular dichroism (ICD) signal, are determined. The latter shows a sign relation that cannot be rationalised in terms of the simple general rules commonly employed to analyse the ICD spectra of achiral guests encircled by chiral hosts. To assist the interpretation of experimental results, DFT and time‐dependent (TD) DFT calculations are performed to explore the availability of low‐energy conformations and to model their spectroscopic response. Molecular dynamics simulations performed in water show the interconversion of a number of conformers, the contribution of which to the ICD signal is in agreement with the observation.  相似文献   

15.
In this study, we reported the synthesis of three kinds of mono-functional pillar[5]arene derivatives PRI, PRII and R and their structures were studied by 1D and 2D NMR spectra and mass spectra. The 2D NMR spectra including 1H-13C HSQC, 1H-1H COSY and NOESY spectra indicated that PRI and PRII are both stable self-included pseudo[1]rotaxanes in CDCl3. These original structures are promising compounds for the design of pillar[5]-based [1]rotaxane. And the results showed that R could exist stable in CDCl3 and DMSO because of the coordination of N-H?O hydrogen bonding interaction and C-H?π interaction.  相似文献   

16.
The synthesis of aliphatically bridged [1](n)rotaxanes and (n)pretzelanes in preparative yields and the dependency of their chiroptical properties on the length (n) of their bridge are reported. A cycloenantiomeric bis(sulphonamide)[2]rotaxane with a sulphonamide group in its axle and its wheel was intramolecularly dialkylated by homologous bifunctional oligomethylene reagents to form chiral [1](n)rotaxanes bearing bridges of different lengths (n) between the axle and the wheel. Intramolecular dialkylation by 1,omega-dibromoalkanes of a topologically chiral bis(sulphonamide)[2]catenane with a sulphonamide group in both of the macrolactam rings leads to pretzel shaped molecules ((n)pretzelanes) with homologous bridges between the two macrocycles. Their yields decrease with decreasing length of the bridge. The shortest bridge isolated so far in reasonable amounts consists of six methylene groups ((6)pretzelane). Remarkably, a covalent connection of axle and wheel in a [2]rotaxane was successful even with much shorter bridges-down to only three methylene groups ([1](3)rotaxane). The structural changes of the [1](n)rotaxanes with decreasing bridge length is expressed by an increasing high-field shift in the 1H NMR spectra. Enantiomeric resolution of the racemates of both series was achieved in seven cases for the [1](n)rotaxanes and two for the (n)pretzelanes by use of chiral HPLC columns. The circular dichrograms of both compound families show a strong dependency on the length of the bridge. However, the shortest bridges displayed some additional unexpected deviations. A new specification of the absolute configuration of supramolecules, such as [n]catenanes, [n]rotaxanes and (n)pretzelanes is introduced together with some nomenclature additions.  相似文献   

17.
With a dinuclear macrocycle 2 that contains weak reversible OsVI-N coordinate bonds, self-assembly and equilibrium dynamics of [2]- and [3]rotaxanes have been investigated. When the macrocycle 2 was mixed together with threads 4a-e, which all contain an adipamide station but different sizes of end groups, [2]pseudorotaxane- and rotaxane-like complexes were immediately formed with large association constants of >7 x 103M(-1) in CDCl3 at 298 K. Exchange dynamics, explored by 2D-EXSY experiments, suggest that assembly and disassembly of complexes occur through two distinct pathways, slipping or clipping, and this depends on the size of the end groups. The slipping pathway is predominant with smaller end groups that give pseudorotaxane-like complexes, while the clipping pathway is observed with larger end groups that yield rotaxane-like complexes. Under the same conditions, exchange barriers (deltaG++) were 14.3 kcalmol(-1) for 4a and 16.7 kcalmol(-1) for 4d, and indicate that the slipping process is at least one order of magnitude faster than the clipping process. Using threads 13a and 13b that contain two adipamide groups, more complicated systems have been investigated in which [2]rotaxane, [3]rotaxane, and free components are in equilibrium. Concentration- and temperature-dependent 1H NMR spectroscopic studies allowed the identification of all possible elements and the determination of their relative distributions in solution. For example, the relative distribution of the free components, [2]rotaxane, and [3]rotaxane are 30, 45, and 25 %, respectively, in a mixture of 2 (2mM) and 13a (2mM) in CDCl3 at 10 degrees C. However, [3]rotaxane exists nearly quantitatively in a mixture of 2 (4 mM) and 13 a (2 mM) in CDCl3 at a low temperature - 10 degrees C.  相似文献   

18.
A novel [2]rotaxane has been prepared in which fullerene C(60) behaves as both a stopper and a photoactive unit. The amphiphilic nature of the rotaxane thread can be used to shuttle the macrocycle from close to the fullerene spheroid (in nonpolar solvents) to far away (in polar solvents). The differing location of the macrocycle in dichloromethane and dimethyl sulfoxide gives rise to effects detectable by (1)H NMR and time-resolved spectroscopy.  相似文献   

19.
A series of thiourea-functionalised pillar[5]arene derivatives 3nm were constructed from a series of mono-amide-functionalised pillar[5]arenes 2n. The formation of their free forms or (pseudo)[1]rotaxane structures were controlled by their axle lengths or solvents, which were investigated by 1H NMR spectroscopy. Some of (pseudo)[1]rotaxane structures were also supported by their single-crystal structures.  相似文献   

20.
A [2]pseudorotaxane, based on a semi-dumbbell-shaped component containing asymmetrically substituted monopyrrolotetrathiafulvalene and 1,5-dioxynaphthalene recognition sites for encirclement by cyclobis(paraquat-p-phenylene) and with a "speed bump" in the form of a thiomethyl group situated between the two recognition sites, has been self-assembled. This supramolecular entity is a mixture in solution of two slowly interconverting [2]pseudorotaxanes, one of which is on the verge of being a [2]rotaxane at room temperature, allowing it to be isolated by employing flash column chromatography. These two [2]pseudorotaxanes were both characterized in solution by UV/Vis and (1)H NMR spectroscopies (1D and 2D) and also by differential pulse voltammetry. The spectroscopic and electrochemical data reveal that one of the complexes behaves wholly as a [2]pseudorotaxane, while the other has some [2]rotaxane character to it. The kinetics of the shuttling of cyclobis(paraquat-p-phenylene) between the monopyrrolotetrathiafulvalene and the 1,5-dioxynaphthalene recognition sites have been investigated at different temperatures. The shuttling processes, which are accompanied by detectable color changes, can be monitored using UV/Vis and (1)H NMR spectroscopies; the spectroscopic data have been employed in the determination of the rate constants, free energies of activation, enthalpies of activation, and the entropies of activation for the translation of cyclobis(paraquat-p-phenylene) between the two recognition sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号