首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
以冲压加速器为工程背景,着重研究预混燃气高压不稳定燃烧问题。采用实验方法,分析预混燃气装填压力、配比等因素对不稳定燃烧的影响;采用频谱分析方法,分析诸因素对压力振动特性的影响。实验给出的预混燃气的装填压力及配比的范围,可直接应用于冲击加速器射击实验,这对于减少冲压加速器高压异常事故具有重要的实际意义。  相似文献   

2.
对内径为1.66mm的不锈钢管燃烧室的氢气预混燃烧实验进行了描述,采用 红外测温仪测量了燃烧室壁面的温度场分布,获得了不同燃烧热功率下的运行界限.在突扩 段内高温回流区的作用下,在带有5mm长突扩段的燃烧室内可以实现完全预混燃 烧,最高运行界限可达1.415.由于较高的进气速度和较大的燃烧室壁面散热,在不带突扩 段的不锈钢管内无法实现完全预混燃烧.结果表明突扩段对微小尺度燃烧具有稳定火焰、拓 宽燃烧运行界限的作用.通过对火焰形状和结构的观察,结合突扩段燃烧流场的分析,合理 解释了燃烧室壁面温度场随过量空气系数的变化规律.  相似文献   

3.
炸药燃速-压力特性是弹药安全性的关键内因,反映了炸药反应烈度增长的倾向性。为了认识PBX-1炸药在未损伤状态下的燃烧特性,发展了密闭空腔燃烧压力-炸药耗量法以及炸药燃烧速率测试方法,并对PBX-1炸药开展了燃烧实验。采用压力传感器测量了密闭燃烧器内部的压力历程,采用快速响应热电偶监测了炸药燃烧阵面时间-位置数据,获得了炸药燃烧速率并拟合出常温下PBX-1炸药热传导燃烧速率与压力的依赖关系r=(2.16±0.55)p1.08±0.06。结果表明,PBX-1炸药的压力指数大于1,燃烧速率对压力变化比较敏感,在100 MPa压力范围内燃烧速率呈指数关系,当压力超过100 MPa后燃烧变得不稳定,燃烧速率迅速增加,导致燃烧器内压力骤变。分析其主要原因是,高压下PBX-1炸药发生物理破坏,炸药燃烧比表面积增加100多倍,炸药反应烈度有经对流燃烧机制提升的趋势。  相似文献   

4.
泄爆过程中二次爆炸的动力学机理研究   总被引:3,自引:0,他引:3  
在容积为0.00814m3的柱形泄爆容器中,对泄爆现象进行实验研究. 容器内充满当量比为1的甲烷-空气预混气,采用底端中心点火,泄爆压力为230±15kPa. 基于k-ε湍流模型和EBU燃烧模型,利用同位网格的SIMPLE算法,对该现象进行了数值模拟. 实验和计算获得的外轴线上4个测压点的压力曲线和外流场的阴影和数值照片,形象地描述了高压泄爆时外部流场的变化. 数值结果与实验结果基本一致. 根据实验和数值结果,详细地讨论了泄爆过程中二次爆炸产生的动力学机理. 泄爆的初始阶段,在破膜激波的引导下,泄出的未燃气体因欠膨胀在外流场形成稀疏波低压区和悬激波高压区. 高压区可燃气体密度和温度上升,成为高密度的预热区域. 随后,火焰以射流形式从泄爆口泄出,点燃可燃气云. 受湍流等因素的影响,特别在高密度的预热区域,燃烧速率可能迅速增大,从而导致二次爆炸.  相似文献   

5.
方形管内楔形障碍物对火焰结构与传播的影响   总被引:1,自引:0,他引:1  
通过实验与数值模拟方法对CH4/空气预混火焰在有楔形障碍物的卧式燃烧方管内的传播进行了研究。采用多镜头Cranz Schardin高速摄像机和压力传感器等实验设备获得了高清晰度的障碍物诱导火焰失稳的分幅时序照片以及障碍物背风表面压力变化曲线。数值模拟则基于RANS方法与EDU-Arrhenius燃烧模型,计算结果与实验结果基本相符,反映了火焰在管内传播与变形的详细过程。通过综合分析实验与计算结果,得到了由楔形障碍物导致的火焰加速与变形的内在机理,揭示了火焰传播过程中由层流燃烧向湍流燃烧转捩的本质。  相似文献   

6.
障碍物在预混气体火焰传播过程中对其结构及传播特性造成较大影响,对火焰的加速和爆燃转爆轰过程(deflagration-to-detonation transition, DDT)起到直接的促进作用。通过障碍物条件下可视管道中甲烷/空气预混火焰传播实验,捕获其火焰微观结构变化。采用三维物理模型,采用壁面自适应局部涡黏模型(wall-adapting local eddy-viscosity, WALE)的大涡模拟(large eddy simulation, LES),并用火焰增厚化学反应模型(thickened flame model, TFM)对实验过程进行重现。分析开口管道中预混火焰翻越障碍物后的复杂流场变化,并分析层流向湍流转变过程的特点。揭示了在障碍物影响下预混火焰扰动失稳现象的直接原因,是由障碍物引发的3个气流涡团同时作用而形成Kelvin-Helmholtz不稳定及Rayleigh-Taylor不稳定现象耦合作用所导致。  相似文献   

7.
球形容器内气体的泄爆过程   总被引:2,自引:0,他引:2  
为了得到球形容器内可燃气体的泄爆强度产生机理以及燃烧火焰与压力传播的基本规律,从流体力学和化学反应动力学守恒出发,采用-湍流模型和EBU-Arrhenius燃烧模型,利用SIMPLE算法对带泄爆导管的球形容器二维空间内甲烷-空气预混气体的泄爆过程内外场进行了数值计算,获得了气体燃烧过程中火焰和压力传播特性以及气体流动特性,能够比较清晰地反映泄爆的整个过程。研究表明,燃烧火焰在泄爆过程中发生湍流,传播得到了极大的加速,泄爆导管对于容器内的高压气体泄放有很大的约束作用。  相似文献   

8.
边界条件对甲烷预混气爆轰特性的影响   总被引:1,自引:0,他引:1  
通过实验研究及数字化处理研究了边界条件对CH4预混气体爆轰特性的影响。在内径为63.5、50.8 mm圆柱形管道及长方体管道进行爆轰实验,得到胞格结构和爆轰速度曲线。烟膜数字化处理量化了预混气体的爆轰不稳定性,并计算出胞格尺寸。3种管道内测得的平均爆轰速度与CJ速度接近,边界条件的影响不明显。分析爆轰速度曲线发现,极限压力受到边界条件的影响,?50.8和?63.5 mm管道内预混气的极限压力分别为5和4.05 kPa,即随着管径增大,爆轰极限压力降低。数字化处理所得不同管道内烟膜轨迹的不规则程度无明显差别,因此可以认为不稳定性是预混气固有的性质。在相同爆轰初始压力下,管径增大,胞格数量变多,表明爆轰传播时爆轰螺旋头数增多以维持传播。  相似文献   

9.
段玉龙  王硕  贺森  万琳 《爆炸与冲击》2020,40(9):113-121
为分析多孔材料对预混气体爆炸特性参数的影响效果,采用自主搭建的爆炸实验平台,探究不同孔隙度和厚度的多孔材料对当量比为1的甲烷/空气预混气体爆炸的作用行为。实验研究表明,不同孔隙度的多孔材料对爆炸火焰和超压具有促进或抑制两种不同的影响。孔隙度较小时,爆燃火焰传播速度随着材料厚度的增大而降低,并在厚度较大时,火焰有短暂的传播延时现象。孔隙度较大时,预混火焰冲击多孔材料时发生淬熄,但随后一段时间内,由于负压抽吸作用,在已爆区域一侧的材料表面产生扩散燃烧现象,且扩散燃烧程度与材料厚度成反比关系。多孔材料的固相结构能降低压力的泄放效率,同时可吸收能量,进而提高爆炸超压的上升速率,降低超压峰值。当每英寸长度孔数δ=10的多孔材料促进火焰传播时,与当量比为1的预混气体爆炸相比,超压峰值最大可提高约2倍,造成更严重的后果。火焰冲击δ=20的多孔材料时发生淬熄,最大超压衰减可达47.17%,δ=30时最大超压衰减了24.62%。  相似文献   

10.
本文对在突扩燃烧室内甲烷和空气的预混燃烧进行了大涡模拟(LES)研究,考虑预混燃料的当量比对燃烧室提供的动力及产生的污染物的影响.利用LES计算了不同当量比条件下燃烧室内湍流预混燃烧反应流场的温度、浓度、涡量和压力分布,最后对当量比0.5时B点和C点的温度和速度进行EMD分解,得到了温度场和速度场的各阶模态的平均周期.结果表明:随着当量比从0.5增加至0.7,燃烧反应趋于剧烈,燃烧室的最高温度提高了350K,平均压力从32.876 Pa增大到34.833Pa,燃烧产生的瞬态径向最高浓度从0.5%增加到0.95%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号