首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface‐modified Fe 3 O 4 nanoparticles (NPs) can be obtained by substituting [(η5‐semiquinone)Mn(CO)3] for oleylamine surface protecting groups. The resulting NP can function as a nucleus or template to generate crystalline coordination polymers that contain superparamagnetic Fe3O4 NPs. Hybridized magnetic properties can be obtained by introducing paramagnetic metal nodes, such as Mn2+, into the polymers (see picture).

  相似文献   


2.
Six organic–inorganic hybrid materials were synthesized by the in situ oxidation of neocuproine by using MoO3/Na2MoO4 as the catalyst in the presence of Cu(NO3)2. The crystal structures of Mo8‐Cu4‐PHEN and Mo8‐Cu2‐5(2PIC) are composed of [Mo8O26]4? polyoxometalate (POM) units, whereas the crystal structure of Mo6‐Cu‐COPHEN is composed of a [Mo6O19]2? POM unit; both POM units could be considered as the active form of the catalyst. Reaction of the hybrid materials with 1,3,5‐benzenetricarboxylic acid (BTC) resulted in the formation of two different coordination polymers (CPs) under different reaction conditions. These CPs, depending on their structural attributes, exhibit distinct differences in the adsorption of H2, CO2, and water. The use of 2‐methylpyridine instead of neocuproine does not give any oxidation products under the same reaction conditions due to the incorrect positioning of the methyl group with respect to the CuII center.  相似文献   

3.
A series of mixed‐ligand‐based CdII/CoII coordination polymers (CPs) that were derived from two bis(pyridyl)–bis(amide) ligands, 4,4′‐oxybis(N‐(pyridin‐3‐yl)benzamide) ( LP ) and 4,4′‐oxybis(N‐(pyridin‐4‐yl)benzamide) ( LP1 ), and a variety of dicarboxylates isophthalates, terephthalates, 1,2‐carboxytranscinamates, and 1,3‐ and 1,4‐phenylene dicarboxylates were synthesized based on a rationale that they would occlude solvate guests inside their crystal lattice, thereby rendering these CPs suitable as metallogelators. The CPs were characterized by using single‐crystal X‐ray diffraction, elemental analysis, powder X‐ray diffraction (PXRD), FTIR spectroscopy, and thermogravimetric analysis (TGA). Structural analyses revealed that the majority of the CPs were lattice‐occluded molecular solids, which provided us with an opportunity to study their gelation behavior. We observed that, out of eight CPs that were tested, seven were able to produce metallogels. A thorough study of the rheological behavior of the metallogels was performed and CPG1 , CPG2 , CPG4 , and CPG5 were found to exhibit rheoreversible behavior, which was further confirmed by rheological experiments. Interestingly, ligand LP was found to form an aqueous gel, which was exploited to produce silver nanoparticles.  相似文献   

4.
Presented herein are two luminescent magnesium coordination polymers (Mg‐CPs), namely [Mg2(H2O)2(2‐NDC)4(1,10‐phen)2] ( 1 ) and [Mg2(H2O)(1,4‐NDC)2(1,10‐phen)] ( 2 ), in which 2‐NDCH=2‐naphthalenecarboxylic acid, 1,4‐NDCH2=1,4‐naphthalene dicarboxylic acid, and 1,10‐phen=1,10‐phenanthroline. Based on the mixed ligands, the title compounds exhibit linker‐based photoluminescence (PL) properties thanks to the unique configuration of the Mg2+ ions. The two compounds show interesting dual emission on excitation of the different luminophores of the mixed linkers. In particular, the emissions of compound 2 could be tuned from green to yellow simply by varying the excitation energies. Furthermore, 2 could be excited by using a commercial λ=450 nm blue LED chip to generate white‐light emission, which allows the fabrication of a white‐light‐emitting diode (WLED) with 20 lm W?1 luminous efficacy. This work may provide a new method for designing tunable PL CPs by using the low‐cost and abundant magnesium ion.  相似文献   

5.
6.
The room‐temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7‐tetrakis(2‐cyanoethylthio)‐tetrathiafulvalene (TCE‐TTF) with paramagnetic (CoII, MnII) and diamagnetic (ZnII, CdII) ions, together with BF4? or ClO4? anions are reported. Infrared and Raman‐active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE‐TTF using density functional theory (DFT) methods. It is confirmed that the TCE‐TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C?C stretching vibrations of TCE‐TTF are analyzed assuming the occurrence of electron–molecular vibration coupling (EMV). The presence of the antisymmetric C?C dimeric mode provides evidence that charge transfer takes place between TCE‐TTF molecules belonging to neighboring polymeric networks.  相似文献   

7.
The present study reports the synthesis and rational design of porous structured materials by using a templating method. A tetraethoxysilylated tripodal tetraamine (TREN) was covalently incorporated in a silica framework with a double imprint: A surfactant template and a metal ion imprint. The presence of a cationic surfactant (CTAB) endowed the material with a high porosity, and the tripodal or square‐pyramidal topology of the ligand was preserved thanks to the use of the silylated CuII complex. After removal of the surfactant and de‐metalation, the incorporated tetraamine was quantitatively complexed by CuCl2 and the material has shown after thermal activation that a reversible binding of O2 on the metal ions occurred. This chemisorption process was monitored by UV/Vis and EPR spectroscopies, and the Cu:O2 adduct was postulated to be an end‐on μ‐η11‐peroxodicopper(II) complex bridged by a chloride ion. The CuI‐active species, formed during the activation step, were fully recovered during several O2 binding cycles. The high reactivity of the copper complexes and the room‐temperature stability of the dioxygen adduct were explained by the fine adaptability of the tripodal ligand to different geometries, the confinement of the active sites in the hybrid silica that protect them from degradation by a control of the metal‐ion microenvironment, as well as the short‐range lamellar order of the copper complexes in the framework.  相似文献   

8.
9.
10.
Introduction of mechanically interlocked components into actinide‐based metal–organic materials such as polyrotaxanes will generate an entirely new type of inorganic–organic hybrid materials showing more supramolecular encapsulation‐based dynamics. In this work, tetranuclear uranyl‐directed polyrotaxanes (UO2)4O2‐C5A3‐CB6 ( 1 ) and (UO2)4O2‐C6A3‐CB6 ( 2 ), which are the first actinide pseudorotaxanes with high‐nuclearity uranium centers, were obtained through systematic extension of the string spacer in pseudorotaxane ligands from 1,4‐butylene (C4) to 1,5‐pentylene (C5) and 1,6‐hexylene (C6). Both of the as‐synthesized tetranuclear uranyl polyrotaxanes were structurally characterized and analyzed. Considering the structure of UO2‐C4A3‐CB6 and the 1,4‐butylene string spacer, the preference for the uranyl tetramer may be related to the configurational inversion of the pseudorotaxane ligands from trans mode to cis mode on coordination to the uranyl center. Detailed structural analysis suggests that the length of the stretched string molecules for CB6 ‐encapsulated pseudorotaxanes has remarkable effect on the supramolecular inclusion interactions and the configurations of pseudorotaxanes, and should be responsible for the configurational inversion of pseudorotaxane spacers and subsequent distinct changes of the uranyl building units and geometric structures.  相似文献   

11.
12.
13.
By applying a recently developed crystal engineering rationale, four C3 symmetric tris(pyridylamide) ligands namely 1,3,5‐tris(nicotinamidomethyl)‐2,4,6‐triethylbenzene, 1,3,5‐tris(isonicotinamidomethyl)‐2,4,6‐triethylbenzene, 1,3,5‐tris(nicotinamidomethyl)‐2,4,6‐trimethylbenzene, and 1,3,5‐tris(isonicotinamidomethyl)‐2,4,6‐trimethylbenzene, which contain potential hydrogen‐bonding sites, were designed and synthesized for generating AgI coordination polymers and coordination‐polymer‐based gels. The coordination polymers thus obtained were characterized by single‐crystal X‐ray diffraction. The silver metallogels were characterized by transmission electron microscopy (TEM) and dynamic rheology. Upon exposure to visible light, these silver metallogels produced silver nanoparticles (AgNPs), which were characterized by TEM, powder X‐ray diffraction, energy dispersive X‐ray and X‐ray photoelectron spectroscopy. These NPs were found to be effectively catalyzed the reduction of 4‐nitrophenolate to 4‐aminophenolate without the use of any exogenous reducing agent.  相似文献   

14.
Single‐ and double‐sided functionalized hybrid organic–inorganic Anderson polyoxomolybdates with GaIII and FeIII positioned as central heteroatoms have been synthesized in a mild, two‐step synthesis in an aqueous medium. Compounds 1 – 4 were isolated as hydrated salts, [TBA]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×12 H2O ( 1 ) (TBA=tetrabutylammonium), Na3[FeMo6O18{(OCH2)3CCH2OH}2]×11 H2O ( 2 ), [TMA]2[GaMo6O18(OH)3{(OCH2)3CNH3}]×7 H2O ( 3 ) (TMA=tetramethylammonium), and Na[TMA]2[FeMo6O18(OH)3{(OCH2)3CNH3}](OH)×6 H2O ( 4 ). All the compounds were characterized based on single‐crystal X‐ray diffraction (SXRD), FTIR, UV/Vis, thermogravimetric, ESI‐MS, NMR, and elemental analyses. Compound 1 was also crystallized with two smaller organic cations, giving [TMA]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×n H2O ( 5 ) and [GDM]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×n H2O ( 6 ) (GDM=guanidinium) and were characterized based on UV/Vis, NMR, FTIR, and elemental analyses. The use of these compounds as additives in macromolecular crystallography was investigated by examining their hydrolytic stability by using ESI‐MS in a pH range of 4 to 9. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) analysis showed that BSA remains intact in a solution containing up to 100 equivalents of 1 or 4 over more than four days at 20 °C. Zeta potential measurements demonstrate that 1 – 4 induce charge inversions on the positively charged surface of BSA (1 mg mL?1) with concentrations starting as low as 1.29 mM for compounds 1 and 2 , which have the highest negative surface charge.  相似文献   

15.
The pH‐induced self‐assembly of three synthetic tripeptides in water medium is used to immobilize luminescent CdS nanoparticles. These peptides form a nanofibrillar network structure upon gelation in aqueous medium at basic pH values (pH 11.0–13.0), and the fabrication of CdS nanoparticles on the gel nanofiber confers the luminescent property to these gels. Atomic force microscopy, field‐emission scanning electron microscopy, and high‐resolution transmission electron microscopy clearly reveal the presence of CdS nanoparticles in a well‐defined array on the gel nanofibers. This is a convenient way to make organic nanofiber–inorganic nanoparticle hybrid nanocomposite systems. The size of the CdS nanoparticles remains almost same before and after deposition on the gel nanofiber. Photoluminescence (PL) measurement of the CdS nanoparticles upon deposition on the gel nanofibers shows a significant blue shift in the emission spectrum of the nanoparticles, and there is a considerable change in the PL gap energy of the CdS nanoparticles after immobilization on different gel nanofibrils. This finding suggests that the optoelectronic properties of CdS nanoparticles can be tuned upon deposition on gel nanofibers without changing the size of the nanoparticles.  相似文献   

16.
17.
18.
In close quarters : When confined in a metal–organic framework, magnesium borohydride reacts with arenes by a hydroboration pathway (see scheme), in contrast to its reactivity under analogous homogeneous solution‐phase conditions. Framework‐imposed organization of the reactive groups is required, which is achieved by a combination of the metal coordination and two hydrogen bonds.

  相似文献   


19.
Three unprecedented 2D architectures made up of sandwich‐type tetra‐metal‐substituted polyoxotungstates and transition‐metal complexes, [Cu(dien)(H2O)]2{[Cu(dien)(H2O)]2‐[Cu(dien)(H2O)2]2[Cu4(SiW9O34)2]}? 5H2O ( 1 ; dien=diethylenetriamine), [Zn(enMe)2(H2O)]2{[Zn(enMe)2]2[Zn4‐ (HenMe)2(PW9O34)2]}?8H2O ( 2 ; enMe =1,2‐diaminopropane), and [Zn(enMe)2‐(H2O)]4[Zn(enMe)2]2{(enMe)2{[Zn‐ (enMe)2]2[Zn4(HSiW9O34)2]}{[Zn‐ (enMe)2(H2O)]2[Zn4(HSiW9O34)2]}}? 13H2O ( 3 ) were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single‐crystal X‐ray diffraction. Compound 1 consists of anions [Cu4(SiW9O34)2]12? linked by copper complexes into a 2D structure, whereas 2 is constructed from novel inorganic–organic hybrid anions [Zn4(HenMe)2(PW9O34)2]8? linked by zinc complexes into a 2D structure. The most interesting is the unique 2D network 3 , which consists of anions [Zn4(PW9O34)2]10? with two types of bridging groups: zinc complexes and enMe ligands.  相似文献   

20.
Forces to reckon with : Supramolecular complexes, such as the one shown, are normally based on a combination of different interactions such as ion pairing, hydrogen bonds, and stacking interactions. The not always simple characterization of the nature and strength of intermolecular forces provides assistance to the understanding of biomimetic systems, as well as for the design of synthetic receptors, drugs, and intelligent materials.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号