首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
An electron‐deficient CpE rhodium(III) complex bearing a cyclopentadienyl ligand with two ethyl ester substituents catalyzes the tandem [2+2+2] annulation–lactamization of acetanilides with two alkynoates via cleavage of adjacent two C?H bonds to give densely substituted benzo[cd]indolones. The reactions of meta‐methoxy‐substituted acetanilides with two alkynoates also provided benzo[cd]indolones via cleavage of adjacent C?H/C?O bonds. Furthermore, 3,5‐dimethoxyacetanilides reacted with two alkynoates to give dearomatized spiro compounds.  相似文献   

2.
The first example of cobalt‐catalyzed oxidative C?H/C?H cross‐coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2?4 H2O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C?H bond activation pathway that the well‐described oxidative C?H/C?H cross‐coupling reactions between two heteroarenes typically undergo.  相似文献   

3.
4.
5.
A cobalt‐catalyzed chelation‐assisted tandem C?H activation/C?C cleavage/C?H cyclization of aromatic amides with alkylidenecyclopropanes is reported. This process allows the sequential formation of two C?C bonds, which is in sharp contrast to previous reports on using rhodium catalysts for the formation of C?N bonds. Here the inexpensive catalyst system exhibits good functional‐group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m‐CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a C?H cobaltation, β‐carbon elimination, and intramolecular C?H cobaltation sequence.  相似文献   

6.
C?H activation bears great potential for enabling sustainable molecular syntheses in a step‐ and atom‐economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C?H/N?H/C?O/C?H functionalization sequence. The powerful iron catalysis occurred under external‐oxidant‐free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4‐iron migration regime for facile C?H activations.  相似文献   

7.
C−H/C−C functionalizations with methylenecyclopropanes (MCPs) were accomplished with a versatile base‐metal catalyst. A robust manganese(I) complex enabled the expedient annulation of MCPs by synthetically meaningful ketimines to deliver, upon one‐pot hydroarylation, densely substituted polycylic anilines in a step‐economical fashion. Mechanistic studies provided strong support for a facile organometallic C−H manganation, while typical cobalt, ruthenium, rhodium, and palladium catalysts were found completely ineffective.  相似文献   

8.
Experimental and computational studies provide detailed insight into the selectivity‐ and reactivity‐controlling factors in bifurcated ruthenium‐catalyzed direct C?H arylations and dehydrogenative C?H/C?H functionalizations. Thorough investigations revealed the importance of arene‐ligand‐free complexes for the formation of biscyclometalated intermediates within a ruthenium(II/IV/II) mechanistic manifold.  相似文献   

9.
Indoles and azaindoles are among the most important heterocycles because of their prevalence in nature and their broad utility in pharmaceutical industry. Reported herein is an unprecedented noble‐metal‐ and oxidant‐free electrochemical method for the coupling of (hetero)arylamines with tethered alkynes to synthesize highly functionalized indoles, as well as the more challenging azaindoles.  相似文献   

10.
Disclosed herein is the merging of C?H activation and radical chemistry, enabling rapid access to a structurally diverse family of fused carbohelicenes through the fusion of α‐acetylnaphthalenes with alkynes under oxidative conditions. This cascade process exhibits exquisite chemoselectivity and regioselectivity. The reaction pathway was analyzed by intermediate separations, control experiments, radical trapping, EPR, MALDI‐TOF‐MS, and ESI‐HRMS experiments, and shown to involve a C2?H activation/radical reaction/C8?H activation relay.  相似文献   

11.
Cationic cobalt complexes enable unprecedented cobalt‐catalyzed C?H/C?C functionalizations with unique selectivity features. The versatile cobalt catalyst proved broadly applicable, enabled efficient C?H/C?C cleavage at room temperature, and delivered Z‐alkenes with excellent diastereocontrol.  相似文献   

12.
13.
14.
Chemoselective C?H arylations were accomplished through micellar catalysis by a versatile single‐component ruthenium catalyst. The strategy provided expedient access to C?H‐arylated ferrocenes with wide functional‐group tolerance and ample scope through weak chelation assistance. The sustainability of the C?H arylation was demonstrated by outstanding atom‐economy and recycling studies. Detailed computational studies provided support for a facile C?H activation through thioketone assistance.  相似文献   

15.
Unusual cleavage of P?C and C?H bonds of the P2N2 ligand, in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P‐tridentate coordination mode. The structures of both the heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P?C/C?H bond cleavage, which involves C?H bond cleavage, hydride rotation, Ni?C/P?H bond formation, and P?C bond cleavage.  相似文献   

16.
Chemical transformations that install heteroatoms into C?H bonds are of significant interest because they streamline the construction of value‐added small molecules. Direct C?H oxyfunctionalization, or the one step conversion of a C?H bond to a C?O bond, could be a highly enabling transformation due to the prevalence of the resulting enantioenriched alcohols in pharmaceuticals and natural products,. Here we report a single‐flask photoredox/enzymatic process for direct C?H hydroxylation that proceeds with broad reactivity, chemoselectivity and enantioselectivity. This unified strategy advances general photoredox and enzymatic catalysis synergy and enables chemoenzymatic processes for powerful and selective oxidative transformations.  相似文献   

17.
Selectivity control in hydroarylation‐based C−H alkylation has been dominated by steric interactions. A conceptually distinct strategy that exploits the programmed switch in the C−H activation mechanism by means of cobalt catalysis is presented, which sets the stage for convenient C−H alkylations with unactivated alkenes. Detailed mechanistic studies provide compelling evidence for a programmable switch in the C−H activation mechanism from a linear‐selective ligand‐to‐ligand hydrogen transfer to a branched‐selective base‐assisted internal electrophilic‐type substitution.  相似文献   

18.
An environmentally friendly electrocatalytic protocol has been developed for dehydrogenative C−H/S−H cross‐coupling. This method enabled C−S bond formation under catalyst‐ and oxidant‐free conditions. Under undivided electrolysis conditions, various aryl/heteroaryl thiols and electron‐rich arenes afforded the C−S bond‐formation products in 24–99 % yield. A preliminary mechanistic study indicated that the generation of aryl radical cation intermediates is key to the success of this transformation.  相似文献   

19.
Activation of C?H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre‐functionalization step of coupling reactants such as organic halides, pseudo‐halides and organometallic reagents. The C?H activation facilitates a simple and straight forward approach devoid of pre‐functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C?H bond activation of small organic molecules, for example, formamide C?H bond can be activated and coupled with β‐dicarbonyl or 2‐carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N‐dimethyl substituted amides, 5‐substituted‐γ‐lactams and α‐acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N‐aryl‐γ‐amino‐γ‐lactams by oxidative coupling of aromatic amines with 2‐pyrrolidinone. Reusable transition metal HT‐derived oxide catalyst was used for the synthesis of N,N‐dimethyl substituted amides by the oxidative cross‐coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.  相似文献   

20.
Visible‐light capture activates a thermodynamically inert CoIII−CF3 bond for direct C−H trifluoromethylation of arenes and heteroarenes. New trifluoromethylcobalt(III) complexes supported by a redox‐active [OCO] pincer ligand were prepared. Coordinating solvents, such as MeCN, afford green, quasi‐octahedral [(SOCO)CoIII(CF3)(MeCN)2] ( 2 ), but in non‐coordinating solvents the complex is red, square pyramidal [(SOCO)CoIII(CF3)(MeCN)] ( 3 ). Both are thermally stable, and 2 is stable in light. But exposure of 3 to low‐energy light results in facile homolysis of the CoIII−CF3 bond, releasing .CF3 radical, which is efficiently trapped by TEMPO. or (hetero)arenes. The homolytic aromatic substitution reactions do not require a sacrificial or substrate‐derived oxidant because the CoII by‐product of CoIII−CF3 homolysis produces H2. The photophysical properties of 2 and 3 provide a rationale for the disparate light stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号