共查询到20条相似文献,搜索用时 13 毫秒
1.
《Macromolecular bioscience》2017,17(3)
The human immunodeficiency virus (HIV) continues to be a global pandemic and there is an urgent need for innovative treatment. Immune cells represent a major target of virus infection, but are also therapeutic targets. Currently, no antiretroviral therapy targets macrophages, which function as portal of entry and as major long‐term deposit of HIV. It has been shown before that human macrophages efficiently internalize gold nanoparticles, a fact which might be used to target them with drug‐nanoparticle conjugates. Here, the authors use gold nanocarriers to facilitate delivery of stavudine, a widely used antiretroviral drug, to primary human macrophages. Using an ease‐of‐use coupling method, a striking potentiation of stavudine intake by macrophages using gold nanocarriers is shown. Further, the carriers induce a specific subtype of proinflammatory activation indicative for antiviral activity of macrophages, which suggests promising novel treatment options for HIV.
2.
Doris Grumelli Dr. Carolina Vericat Dr. Guillermo Benítez Dr. José M. Ramallo‐López Dr. Lisandro Giovanetti Dr. Félix Requejo Dr. M. Sergio Moreno Dr. Alejandro González Orive Alberto Hernández Creus Dr. Roberto C. Salvarezza Dr. 《Chemphyschem》2009,10(2):370-373
Attractive combination: Biopolymer‐modified nanoparticles which combine magnetic properties with biocompatibility are prepared and delivered following a three‐step strategy (see figure): i) Adsorption of thiol‐capped metal nanoparticles on graphite, ii) electrochemical modification, iii) potential‐induced delivery of the modified nanoparticles to the electrolyte.
3.
Dr. Achraf Noureddine Dr. Magali Gary‐Bobo Dr. Laure Lichon Dr. Marcel Garcia Prof. Jeffrey I. Zink Dr. Michel Wong Chi Man Dr. Xavier Cattoën 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(28):9624-9630
Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co‐condensation of TEOS with variable amounts (2–5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on‐demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans‐to‐cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on‐command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin‐loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not. 相似文献
4.
Ana Sanchez‐Sanchez Somayeh Akbari Angel J. Moreno Federica Lo Verso Arantxa Arbe Juan Colmenero Jos A. Pomposo 《Macromolecular rapid communications》2013,34(21):1681-1686
Inspired by the multifunctionality of vitamin D‐binding protein and the multiple transient‐binding behavior of some intrinsically disordered proteins (IDPs), a polymeric platform is designed, prepared, and characterized for combined delivery of dermal protective and anticancer bioactive cargos on the basis of artificial single‐chain nano‐objects mimicking IDPs. For the first time ever, simultaneous delivery of folic acid or vitamin B9, and hinokitiol, a relevant natural bioactive compound that exhibits anticancer activity against human malignant melanoma cells, from these multidirectionally self‐assembled unimolecular nanocarriers is illustrated.
5.
Carboxylated Pillar[5]arene‐Coated Gold Nanoparticles with Chemical Stability and Enzyme‐like Activity 下载免费PDF全文
Dr. Chiyoung Park Eun Sun Jeong Kyung Joo Lee Prof. Dr. Hoi Ri Moon Prof. Dr. Kyoung Taek Kim 《化学:亚洲杂志》2014,9(10):2761-2764
A facile synthesis of gold nanoparticles (AuNPs) covered with a multidentate macrocycle, carboxylated pillar[5]arene ( CP ), via a one‐pot hydrothermal process is reported. The resulting AuNPs are highly stable against salts and pH variations, while their traditional counterparts are not stable at the same conditions. For the stabilization, multiple carboxylate groups of CP might contribute to electrostatic or steric stabilization. In addition, we found that CP ‐coated AuNPs exhibit greater peroxidase‐like activity than citrate‐stabilized AuNPs in the presence of silver cations. The system presented herein would provide a new scheme to fabricate unique sensory systems in combination with enzymes, which can bind to the pocket of CP . 相似文献
6.
Significant efforts have been invested in finding a delivery system that can encapsulate and deliver therapeutics. Core–shell polymer‐lipid hybrid nanoparticles have been studied as a promising platform because of their mechanical stability, narrow size distribution, biocompatibility, and ability to co‐deliver diverse drugs. Here, novel core–shell nanoparticles based on a poly(lactic‐co‐glycolic acid) (PLGA) core and multilamellar lipid shell are designed, where the lipid bilayers are crosslinked between the two adjacent bilayers (PLGA‐ICMVs). The cross‐platform performance of the nanoparticles to other polymer‐lipid hybrid platforms is examined, including physicochemical characteristics, ability to encapsulate a variety of therapeutics, biocompatibility, and functionality as a vaccine delivery platform. Differential abilities of nanoparticle systems to encapsulate distinct pharmaceutics are observed, which suggest careful consideration of the platform chosen depending on the therapeutic agent and desired function. The novel PLGA‐ICMV platform herein demonstrates great potential in stably encapsulating water‐soluble agents and therefore is an attractive platform for therapeutic delivery. 相似文献
7.
Shuxin Zhang Chang Chen Chang Xue Dingran Chang Huo Xu Bruno J. Salena Yingfu Li Zai‐Sheng Wu 《Angewandte Chemie (International ed. in English)》2020,59(34):14584-14592
Herein, we report on the design of a programmable DNA ribbon using long‐chain DNA molecules with a user‐defined repetitive padlock sequence. The DNA ribbon can be further combined with gold nanoparticles (AuNPs) to create a composite nanomaterial that contains an AuNP core and a high‐density DNA crown carrying a cancer‐cell‐targeting DNA aptamer, a fluorescent tag for location tracking, and a cell‐killing drug. This composite material can be efficiently internalized by cancer cells and its cellular location can be tracked by fluorescence imaging. The system offers several attractive characteristics, including simple design, tunable DNA crown, high drug‐loading capacity, selective cell targeting, and pH‐sensitive drug release. These features make such a material a promising therapeutic agent. 相似文献
8.
9.
Carmen Martin Katharina Kastner Jamie M. Cameron Elizabeth Hampson Jesum Alves Fernandes Emma K. Gibson Darren A. Walsh Victor Sans Graham N. Newton 《Angewandte Chemie (International ed. in English)》2020,59(34):14331-14335
We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol‐functionalised hybrid organic–inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms new nanocomposites that are stable at temperatures and pH values which destroy analogous electrostatically functionalised nanocomposites. Photoelectrochemical analysis revealed the unique photochemical and redox properties of these systems. 相似文献
10.
Olga Korovkina Dmitry Polyakov Viktor Korzhikov-Vlakh Evgenia Korzhikova-Vlakh 《Molecules (Basel, Switzerland)》2022,27(23)
The development of non-viral delivery systems for effective gene therapy is one of the current challenges in modern biomedicinal chemistry. In this paper, the synthesis of pH- and redox-responsive amphiphilic polypeptides for intracellular DNA delivery is reported and discussed. Two series of polypeptides consisting of L-lysine, L-phenylalanine, L-histidine, and L-cysteine as well as the same amino acids with L-glutamic acid were synthesized by a combination of copolymerization of N-carboxyanhydrides of α-amino acids and post-polymerization modification of the resulting copolymers. The presence of histidine provided pH-sensitive properties under weakly acidic conditions specific to endosomal pH. In turn, the presence of cysteine allowed for the formation of redox-responsive disulfide bonds, which stabilized the self-assembled nanoparticles in the extracellular environment but could degrade inside the cell. The formation of intraparticle disulfide bonds resulted in their compactization from 200–250 to 55–100 nm. Empty and pDNA-loaded cross-linked nanoparticles showed enhanced stability in various media compared to non-crosslinked nanoparticles. At the same time, the addition of glutathione promoted particle degradation and nucleic acid release. The delivery systems were able to retain their size and surface charge at polypeptide/pDNA ratios of 10 or higher. GFP expression in HEK 293 was induced by the delivery of pEGFP-N3 with the developed polypeptide nanoparticles. The maximal transfection efficacy (70%) was observed when the polypeptide/pDNA ratio was 100. 相似文献
11.
Dr. Kouta Sugikawa Tatsuya Kadota Dr. Kazuma Yasuhara Prof. Atsushi Ikeda 《Angewandte Chemie (International ed. in English)》2016,55(12):4059-4063
The behavior of self‐assembly processes of nanoscale particles on plasma membranes can reveal mechanisms of important biofunctions and/or intractable diseases. Self‐assembly of citrate‐coated gold nanoparticles (cAuNPs) on liposomes was investigated. The adsorbed cAuNPs were initially fixed on the liposome surfaces and did not self‐assemble below the phospholipid phase transition temperature (Tm). In contrast, anisotropic cAuNP self‐assembly was observed upon heating of the composite above the Tm, where the phospholipids became fluid. The number of self‐assembled NPs is conveniently controlled by the initial mixing ratio of cAuNPs and liposomes. Gold nanoparticle protecting agents strongly affected the self‐assembly process on the fluidic membrane. 相似文献
12.
Salt‐Driven Deposition of Thermoresponsive Polymer‐Coated Metal Nanoparticles on Solid Substrates 下载免费PDF全文
Zhiyue Zhang Dr. Samarendra Maji Dr. André B. da Fonseca Antunes Riet De Rycke Prof. Richard Hoogenboom Prof. Bruno G. De Geest 《Angewandte Chemie (International ed. in English)》2016,55(25):7086-7090
Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble‐metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer‐like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt‐free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion‐induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer‐coated nanoparticles and a hydrophobic substrate. 相似文献
13.
Calix[4]arene‐Functionalised Silver Nanoparticles as Hosts for Pyridinium‐Loaded Gold Nanoparticles as Guests 下载免费PDF全文
Francesco Vita Dr. Alice Boccia Dr. Andrea G. Marrani Prof. Robertino Zanoni Dr. Francesca Rossi Prof. Arturo Arduini Prof. Andrea Secchi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(43):15428-15438
A series of lipophilic gold nanoparticles (AuNPs) circa 5 nm in diameter and having a mixed organic layer consisting of 1‐dodecanethiol and 1‐(11‐mercaptoundecyl) pyridinium bromide was synthesised by reacting tetraoctylammonium bromide stabilised AuNPs in toluene with different mixtures of the two thiolate ligands. A bidentate ω‐alkylthiolate calix[4]arene derivative was instead used as a functional protecting layer on AgNPs of approximately 3 nm. The functionalised nanoparticles were characterised by transmission electron microscopy (TEM), and by UV/Vis and X‐ray photoelectron spectroscopy (XPS). Recognition of the pyridinium moieties loaded on the AuNPs by the calix[4]arene units immobilised on the AgNPs was demonstrated in solution of weakly polar solvents by UV/Vis titrations and DLS measurements. The extent of Au‐AgNPs aggregation, shown through the low‐energy shift of their surface plasmon bands (SPB), was strongly dependent on the loading of the pyridinium moieties present in the organic layer of the AuNPs. Extensive aggregation between dodecanethiol‐capped AuNPs and the Ag calix[4]arene‐functionalised NPs was also promoted by the action of a simple N‐octyl pyridinium difunctional supramolecular linker. This linker can interdigitate through its long fatty tail in the organic layer of the dodecanethiol‐capped AuNPs, and simultaneously interact through its pyridinium moiety with the calix[4]arene units at the surface of the modified AgNPs. 相似文献
14.
15.
16.
DNA‐Hybrid‐Gated Multifunctional Mesoporous Silica Nanocarriers for Dual‐Targeted and MicroRNA‐Responsive Controlled Drug Delivery 下载免费PDF全文
Penghui Zhang Fangfang Cheng Ri Zhou Dr. Juntao Cao Dr. Jingjing Li Prof. Dr. Clemens Burda Dr. Qianhao Min Prof. Dr. Jun‐Jie Zhu 《Angewandte Chemie (International ed. in English)》2014,53(9):2371-2375
The design of an ideal drug delivery system with targeted recognition and zero premature release, especially controlled and specific release that is triggered by an exclusive endogenous stimulus, is a great challenge. A traceable and aptamer‐targeted drug nanocarrier has now been developed; the nanocarrier was obtained by capping mesoporous silica‐coated quantum dots with a programmable DNA hybrid, and the drug release was controlled by microRNA. Once the nanocarriers had been delivered into HeLa cells by aptamer‐mediated recognition and endocytosis, the overexpressed endogenous miR‐21 served as an exclusive key to unlock the nanocarriers by competitive hybridization with the DNA hybrid, which led to a sustained lethality of the HeLa cells. If microRNA that is exclusively expressed in specific pathological cell was screened, a combination of chemotherapy and gene therapy should pave the way for a targeted and personalized treatment of human diseases. 相似文献
17.
Gold nanoparticles have seen unprecedented development in the biomedical field, particularly for cancer therapy. They have received extensive attention because of their easy preparation, functionalization, biocompatibility, non‐cytotoxicity, and detectability. Functionalized gold nanoparticles can be applied in the fields of drug and gene delivery, photothermal therapy, and bioimaging. This review introduces methods for preparing various shapes of gold nanoparticles and describes their current applications in the field of cancer treatment. Moreover, the review presents the development routes and current issues of gold nanoparticles in clinical theranostics. 相似文献
18.
Dr. Jinsuo Gao Xueying Zhang Yan Yang Jun Ke Prof. Xinyong Li Prof. Yaobin Zhang Prof. Feng Tan Prof. Jingwen Chen Prof. Xie Quan 《化学:亚洲杂志》2013,8(5):934-938
Silanol groups on a silica surface affect the activity of immobilized catalysts because they can influence the hydrophilicity/hydrophobicity, matter transfer, or even transition state in a catalytic reaction. Previously, these silanol groups have usually been passivated by using surface‐passivation reagents, such as alkoxysilanes, bis‐silylamine reagents, chlorosilanes, etc., and surface passivation has typically been found in mesoporous‐silicas‐supported molecular catalysts and heteroatomic catalysts. However, this property has rarely been reported in mesoporous‐silicas‐supported metal‐nanoparticle catalysts. Herein, we prepared an almost‐superhydrophobic SBA‐15‐supported gold‐nanoparticle catalyst by using surface passivation, in which the catalytic activity increased more than 14 times for the reduction of nitrobenzene compared with non‐passivated SBA‐15. In addition, this catalyst can selectively catalyze hydrophobic molecules under our experimental conditions, owing to its high (almost superhydrophobic) hydrophobic properties. 相似文献
19.
Growth and Origami Folding of DNA on Nanoparticles for High‐Efficiency Molecular Transport in Cellular Imaging and Drug Delivery 下载免费PDF全文
Dr. Juan Yan Chongya Hu Dr. Ping Wang Dr. Bin Zhao Dr. Xiangyuan Ouyang Juan Zhou Rui Liu Prof. Dannong He Prof. Chunhai Fan Prof. Shiping Song 《Angewandte Chemie (International ed. in English)》2015,54(8):2431-2435
A novel three‐dimensional (3D) superstructure based on the growth and origami folding of DNA on gold nanoparticles (AuNPs) was developed. The 3D superstructure contains a nanoparticle core and dozens of two‐dimensional DNA belts folded from long single‐stranded DNAs grown in situ on the nanoparticle by rolling circle amplification (RCA). We designed two mechanisms to achieve the loading of molecules onto the 3D superstructures. In one mechanism, ligands bound to target molecules are merged into the growing DNA during the RCA process (merging mechanism). In the other mechanism, target molecules are intercalated into the double‐stranded DNAs produced by origami folding (intercalating mechanism). We demonstrated that the as‐fabricated 3D superstructures have a high molecule‐loading capacity and that they enable the high‐efficiency transport of signal reporters and drugs for cellular imaging and drug delivery, respectively. 相似文献
20.
本文综述了智能聚合物包覆的金纳米粒子的研究进展,重点介绍了智能聚合物包覆金纳米粒子的制备方法,包括原位合成法、配体置换法、表面引发聚合法和表面接枝聚合法等,以及智能聚合物包覆的金纳米粒子的智能响应类型,如温度敏感型、pH敏感型、pH/电解质双重敏感型、pH/温度双重敏感型、溶剂敏感型等。 相似文献