首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, donor‐acceptor type thiophene‐perylene‐thiophene monomers were synthesized and polymerized by both oxidative polymerization using FeCl3 as catalyst and the electrochemical process. UV–vis, FTIR, 1H NMR, and elemental analysis techniques were used for structural characterization. Thermal behaviors of these compounds were determined by using TGA system. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels and electrochemical and optical band gap values were calculated by using the results of cyclic voltammetry and UV–vis measurements, respectively. The number–average molecular weight (Mn), weight–average molecular weight (Mw), and polydispersity index (PDI) values of synthesized polymers were determined by size exclusion chromatography. Conductivity measurements of these polymers were carried out by electrometer by using a four‐point probe technique. The conductivity was observed to be increased by iodine doping. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1974–1989, 2008  相似文献   

2.
In an effort to design efficient low‐cost polymers for use in organic photovoltaic cells the easily prepared donor–acceptor–donor triad of a either cis‐benzobisoxazole, trans‐benzobisoxazole or trans‐benzobisthiazole flanked by two thiophene rings was combined with the electron‐rich 4,8‐bis(5‐(2‐ethylhexyl)‐thien‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene. The electrochemical, optical, morphological, charge transport, and photovoltaic properties of the resulting terpolymers were investigated. Although the polymers differed in the arrangement and/or nature of the chalcogens, they all had similar highest occupied molecular orbital energy levels (?5.2 to ?5.3 eV) and optical band gaps (2.1–2.2 eV). However, the lowest unoccupied molecular orbital energy levels ranged from ?3.1 to ?3.5 eV. When the polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM ([6,6]‐phenyl C71‐butyric acid methyl ester) as the acceptor, the trans‐benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 316–324  相似文献   

3.
A series of novel soluble donor‐acceptor low‐bandgap‐conjugated polymers consisting of different oligothiophene (OTh) coupled to electron‐accepting moiety 2‐pyran‐4‐ylidenemalononitrile (PM)‐based unit were synthesized by Stille or Suzuki coupling polymerization. The combination of electron‐accepting PM building block with varied OThn (the number of thiophene unit increases from 3 to 5) results in enhanced π–π stacking in solid state and intramolecular charge transfer (ICT) transition, which lead to an extension of the absorption spectra of the copolymers. Cyclic voltammetry measurements and molecular orbital distribution calculations indicate that the highest occupied molecular orbitals (HOMO) energy levels could be fine‐tuned by changing the number of thiophene units of the copolymers, and the resulting copolymers possessed relatively low HOMO energy levels promising good air stability and high‐open circuit voltage (Voc) for photovoltaic application. Bulk heterojunction photovoltaic devices were fabricated by using the copolymers as donors and (6,6)‐phenyl C61‐butyric acid methyl ester as acceptor. It was found that the highest Voc reached 0.94 V, and the short circuit currents (Jsc) were improved from 1.78 to 2.54 mA/cm2, though the power conversion efficiencies of the devices were measured between 0.61 and 0.99% under simulated AM 1.5 solar irradiation of 100 mW/cm2, which indicated that this series copolymers can be promising candidates for the photovoltaic applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2765–2776, 2010  相似文献   

4.
A novel class of thieno[3,2‐b]thiophene (TT) and isoindigo based copolymers were synthesized and evaluated as electron donor and hole transport materials in bulk‐heterojunction polymer solar cells (BHJ PSCs). These π‐conjugated donor‐acceptor polymers were derived from fused TT and isoindigo structures bridged by thiophene units. The band‐gaps and the highest occupied molecular orbital (HOMO) levels of the polymers were tuned using different conjugating lengths of thiophene units on the main chains, providing band‐gaps from 1.55 to 1.91 eV and HOMO levels from ?5.34 to ?5.71 eV, respectively. The corresponding lowest unoccupied molecular orbital (LUMO) levels were appropriately adjusted with the isoindigo units. Conventional BHJ PSCs (ITO/PEDOT:PSS/active layer/interlayer/Al) with an active layer composed of the polymer and PC71BM were fabricated for evaluation. Power conversion efficiency from a low of 1.25% to a high of 4.69% were achieved with the best performing device provided by the D?π?A polymer with a relatively board absorption spectrum, high absorption coefficient, and more uniform blend morphology. These results demonstrate the potential of this class of thieno[3,2‐b]thiophene‐isoindigo‐based polymers as efficient electron donor and hole transport polymers for BHJ PSCs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Novel alternating conjugated copolymers ( P1–P6 ) consisting of an electron‐deficient benzothiadiazole and a variety of electron‐rich thiophene‐arene‐thiophene units were synthesized by palladium‐catalyzed polycondensations (Stille and Suzuki reactions), aiming at processable materials with a reduced optical band gap. The structures of P1–P6 were confirmed by 1H NMR and 13C NMR, and their molecular weights were determined by size exclusion chromatography. In the Suzuki polycondensation, the role of the catalyst [Pd(PPh3)4 and Pd(OAc)2] on the resulting molecular weight was investigated. Pd(OAc)2 enhances the molecular weight of the polymers for both thiophene and phenylene bis‐boronic esters as compared with Pd(PPh3)4. The optical properties of the polymers were examined in solution and the solid state. The polymers with n‐octyl substituents ( P1 , P4 , P5 , and P6 ) on the thiophene rings possessed less‐planar structures as a result of torsional steric hindrance, and their absorption spectra appeared blueshifted as compared with their unsubstituted analogues ( P2 and P3 ). The electrochemical properties of the polymers were studied using cyclic voltammetry. Although the alkyl substitution affects the oxidation potential, only marginal differences in the reduction potentials were observed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2360–2372, 2002  相似文献   

6.
A series of thiophene‐containing photoactive copolymers consisting of alternating conjugated and nonconjugated segments were synthesized. The 1H NMR spectra corroborated the well‐defined structures, and the copolymers not only were soluble in common organic solvents but also had high glass‐transition temperatures (ca. 130 °C) and good thermal stability up to 390 °C. Introducing aliphatic functional groups, such as alkyl or alkoxyl, into chromophores of the copolymers redshifted the photoluminescence spectra and lowered the optical bandgaps. The electrochemical bandgaps calculated from cyclic voltammetry agreed with the optical bandgaps and thus indicated that electroluminescence and photoluminescence originated from the same excited state. The energy levels (highest occupied molecular orbital and lowest unoccupied molecular orbital) of all the copolymers were lower than those of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1.4‐phenylenevinylene] MEH–PPV, indicating balanced hole and electron injection, which led to improved performance in both single‐layer and double‐layer polymeric‐light‐emitting‐diode devices fabricated with these copolymers. All the copolymers emitted bluish‐green or green light above the threshold bias of 5.0 V under ambient conditions. At the maximum bias of 10 V, the electroluminescence of a device made of poly(2‐{4‐[2‐(3‐ethoxy phenyl)ethylene]phenyl}‐5‐{4‐[2‐(3‐ethoxy,4‐1,8‐octanedioxy phenyl)ethylene]phenyl}thiophene) was 5836 cd/m2. The external electroluminescence efficiency decreased with the lifetime as the polymer degraded. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3954–3966, 2004  相似文献   

7.
Polymers consisting of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]thiophene units (PTB‐based polymers), either fully or partially containing 4‐fluorophenyl pendants, are synthesized as electron donor materials for inverted‐type polymer solar cells (PSCs). The influence of the 4‐fluorophenyl pendant content on the thermal and optical properties, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the hole mobilities, and photovoltaic performances are investigated. As the 4‐fluorophenyl pendant content increased, the HOMO and LUMO of the polymers were deepened proportionally and the open‐circuit voltages of the PSCs improved. Incorporation of 4‐fluorophenyl pendants into the polymers also affected the crystallinity, orientation, and compatibility with [6,6]‐phenyl‐C61‐butyric acid methyl ester in the active layers, leading to nonlinearities in the short‐circuit current densities, and fill factors. The incorporation of an appropriate number of 4‐fluorophenyl pendants enhanced the power conversion efficiencies of the PSC devices from 2.25 to 3.96% for identical device configurations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1586–1593  相似文献   

8.
A new donor‐acceptor copolymer, containing benzodithiophene (BDT) and methyl thiophene‐3‐carboxylate (3MT) units, is designed and synthesized for polymer solar cells (PSCs). The 3MT unit is used as an electron acceptor unit in this copolymer to provide a lower highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a higher open‐circuit voltage (VOC). The resulting bulk heterojunction PSC made of the copolymer and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits a power conversion efficiency (PCE) up to 4.52%, a short circuit current (JSC) of 10.5 mA·cm‐2, and a VOC of 0.86 V.  相似文献   

9.
NeuroSensor 521 (NS521) is a fluorescent sensor for primary‐amine neurotransmitters based on a platform that consists of an aryl moiety appended to position C4 of the coumarin‐3‐aldehyde scaffold. We demonstrate that sensors based on this platform behave as a directly linked donor–acceptor system that operates through an intramolecular acceptor‐excited photoinduced electron transfer (a‐PET) mechanism. To evaluate the PET process, a series of benzene‐ and thiophene‐substituted derivatives were prepared and the photophysical properties, binding affinities, and fluorescence responses toward glutamate, norepinephrine, and dopamine were determined. The calculated energy of the highest occupied molecular orbital (EHOMO) of the pendant aryl substituents, along with oxidation and reduction potential values derived from the calculated molecular orbital energy values of the platform components, allowed for calculation of the fluorescence properties of the benzene sensor series. Interestingly, the thiophene derivatives did not fit the typical PET model, highlighting the limitations of the method. A new sensor, NeuroSensor 539, displayed enhanced photophysical properties aptly suited for biological imaging. NeuroSensor 539 was validated by selectively labeling and imaging norepinephrine in secretory vesicles of live chromaffin cells.  相似文献   

10.
New donor–acceptor (D‐A) polymers, poly(4,5‐bis(2‐octyldodecyloxy)naphto[2,1‐b:3,4‐b']dithiophenebenzo[c][1,2,5]thiadiazole) (PNDT‐B) and poly(4,5‐bis(2‐octyldodecyloxy)naphto [2,1‐b:3,4‐b′]dithiophene‐4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole) (PNDT‐TBT), with the extended π‐electron delocalization of naphtho[2,1‐b:3,4‐b']dithiophene, were successfully synthesized by Suzuki and Stille coupling reactions. The structure and physical properties of polymers were characterized by DFT calculation, UV–vis absorption, cyclovoltammetry, TGA and DSC analyses. X‐ray diffraction studies indicated a relatively highly ordered intermolecular structure in PNDT‐TBT after annealing. This high degree of molecular order resulted from the crystallinity and increasing planarity, provided by the thiophene linker groups and the interdigitation of the long alkoxy side chains. The new D‐A polymer, PNDT‐TBT, exhibited a p‐type carrier mobility of 0.028 cm2/Vs and an on/off ratio of 5.9 × 103. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 525–531  相似文献   

11.
An alkylated semiconducting polymer comprising alternating bithiophene‐[all]‐S,S‐dioxide and aromatic monothiophene units in the polymer backbone was synthesized with the intent of modifying the energy gap and lowest unoccupied molecular orbital for use as a stable n‐type semiconductor. Films spun from this semiconducting polymer were characterized utilizing X‐ray scattering, near edge X‐ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, and thin‐film field effect transistors to determine how oxidation of the thiophene ring systems impacts the structural and electronic properties of the polymer. The thiophene‐S,S‐dioxide polymers have lower optical and electrical band gaps than corresponding thiophene polymers. X‐ray scattering results indicate that the polymers are well ordered with the π–π stacking distances increased by 0.4 Å relative to analogous thiophene polymers. The electrical stability of these polymers is poor in transistors with a drop in the field effect mobility by approximately one order of magnitude upon addition of just 5% of the thiophene‐S,S‐dioxide unit in a copolymer with thiophene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

12.
A systematic phytochemical investigation on Abies forrestii afforded two new and 20 known compounds. Abieseconordines A and B ( 1 and 2 ) are the first two examples of norditerpenes with a novel 18‐nor‐5,10 : 9,10‐disecoabietane skeleton. Their structures were established mainly by analysis of 1D‐ and 2D‐NMR spectroscopic data. In addition, electronic circular‐dichroism calculations and molecular‐orbital analysis were utilized to confirm the absolute configuration of 1 . Both compounds exhibited a potent effect in a bioassay inhibiting LPS‐stimulated NO production in RAW264.7 macrophages.  相似文献   

13.
Four new polymers containing a benzo[c]thiophene‐N‐dodecyl‐4,5‐dicarboxylic imide (DIITN) unit including the homopolymer and three donor–acceptor copolymers were designed, synthesized, and characterized. For these copolymers, DIITN unit with low bandgap was selected as an electron acceptor, whereas 5,5′‐(2,7‐bisthiophen‐2‐yl)‐9‐(2‐decyltetradecyl)‐9H‐carbazole), 5,5′‐(3,3′‐di‐n‐octylsilylene‐2,2′‐bithiophene), and 5,5′‐(2,7‐bisthiophen‐2‐yl‐9,9‐bisoctyl‐9H‐fluoren‐7‐yl) were chosen as the electron donor units to tune the highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) levels of the copolymers for better light harvesting. These polymers exhibit extended absorption in the visible and near‐infrared range and are soluble in common organic solvents. The relative low lying HOMO of these polymers promises good air stability and high open‐circuit voltage (Voc) for photovoltaic application. Bulk heterojunction solar cells were fabricated by blending the copolymers with [6,6]‐phenyl‐C61‐butyric acid methyl ester or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM). The best power conversion efficiency of 1.6% was achieved under simulated sunlight AM 1.5G (100 mW/cm2) from solar cells containing 20 wt % of the fluorene copolymer poly[5,5′‐(2,7‐bisthiophen‐2‐yl‐9,9‐bisoctyl‐9H‐fluoren‐7‐yl)‐alt‐2,9‐(benzo[c]thiophene‐N‐dodecyl‐4,5‐dicarboxylic imide)] and 80 wt % of PC71BM with a high open‐circuit voltage (Voc) of 0.84 V. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Donor–acceptor (D–A) conjugated polymers bearing non‐covalent configurationally locked backbones have a high potential to be good photovoltaic materials. Since 1,4‐dithienyl‐2,5‐dialkoxybenzene ( TBT ) is a typical moiety possessing intramolecular S…O interactions and thus a restricted planar configuration, it was used in this work as an electron‐donating unit to combine with the following electron‐accepting units: 3‐fluorothieno[3,4‐b]thiophene ( TFT ), thieno‐[3,4‐c]pyrrole‐4,6‐dione ( TPD ), and diketopyrrolopyrrole ( DPP ) for the construction of such D–A conjugated polymers. Therefore, the so‐designed three polymers, PTBTTFT , PTBTTPD , and PTBTDPP , were synthesized and investigated on their basic optoelectronic properties in detail. Moreover, using [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as acceptor material, polymer solar cells (PSCs) were fabricated for studying photovoltaic performances of these polymers. It was found that the optimized PTBTTPD cell gave the best performance with a power conversion efficiency (PCE) of 4.49%, while that of PTBTTFT displayed the poorest one (PCE = 1.96%). The good photovoltaic behaviors of PTBTTPD come from its lowest‐lying energy level of the highest occupied molecular orbital (HOMO) among the three polymers, and good hole mobility and favorable morphology for its PC71BM‐blended film. Although PTBTDPP displayed the widest absorption spectrum, the largest hole mobility, and regular chain packing structure when blended with PC71BM, its unmatched HOMO energy level and disfavored blend film morphology finally limited its solar cell performance to a moderate level (PCE: 3.91%). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 689–698  相似文献   

15.
New electroluminescent polymers (poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene‐co‐benzo[2,3,5]thiadiazole) ( P1) and poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene‐co‐benzo[2,3,5]thiadiazole‐co‐[4‐(2‐ethylhexyloxyl)phenyl]diphenylamine ( P2) ) possess hole‐transporting or electron‐transporting units or both in the main chains. Electron‐deficient benzothiadiazole and electron‐rich triphenylamine moieties were incorporated into the polymer backbone to improve the electron‐transporting and hole‐transporting characteristics, respectively. P1 and P2 show greater solubility than poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene ( PFTT ), without sacrificing their good thermal stability. Moreover, owing to the incorporation of the electron‐deficient benzothiadiazole unit, P1 and P2 exhibit remarkably lower LUMO levels than PFTT , and thus, it should facilitate the electron injection into the polymer layer from the cathode electrode. Consequently, because of the balance of charge mobility, LED devices based on P1 and P2 exhibit greater brightness and efficiency (up to 3000 cd/m2 and 1.35 cd/A) than devices that use the pristine PFTT . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 243–253, 2006  相似文献   

16.
A dichlorobenzene‐functionalized hole‐transporting material (HTM) is developed for a CH3NH3PbI3‐based perovskite solar cell. Notwithstanding the similarity of the frontier molecular orbital energy levels, optical properties, and hole mobility between the functionalized HTM [a polymer composed of 2′‐butyloctyl‐4,6‐dibromo‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (TT‐BO), 3′,4′‐dichlorobenzyl‐4,6‐dibromo‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (TT‐DCB), and 2,6‐bis(trimethyltin)‐4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐EH), denoted PTB‐DCB21] and the nonfunctionalized polymer [a polymer composed of thieno[3,4‐b]thiophene (TT) and benzo[1,2‐b:4,5‐b′]dithiophene (BDT), denoted PTB‐BO], a higher power conversion efficiency for PTB‐DCB21 (8.7 %) than that for PTB‐BO (7.4 %) is achieved because of a higher photocurrent and voltage. The high efficiency is even obtained without including additives, such as lithium bis(trifluoromethanesulfonyl)imide and/or 4‐tert‐butylpyridine, that are commonly used to improve the conductivity of the HTM. Transient photocurrent–voltage studies show that the PTB‐DCB21‐based device exhibits faster electron transport and slower charge recombination; this might be related to better interfacial contact through intermolecular chemical interactions between the perovskite and the 3,4‐dichlorobenzyl group in PTB‐DCB21.  相似文献   

17.
2,5‐Dibromo‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene ( DBPyTh ) was synthesized by the Suzuki coupling reaction between two aromatic compounds followed by the bromination. The Grignard metathesis reaction of DBPyTh with isopropylmagnesium chloride proceeded in 85% conversion and the regioselective halogen–metal exchange at the 2‐position was confirmed. Namely, 5‐bromo‐2‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene and 2‐bromo‐5‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene were generated in 90:10 molar ratio. Subsequently, the Kumada coupling polymerization was carried out using 1,3‐bis(diphenylphosphinopropane)nickel(II) dichloride to obtain poly(3‐(6′‐hexylpyridine‐2′‐yl)thiophene) ( PolyPyTh ). The polymer molecular weight could be roughly controlled by the catalyst concentration and the molecular weight distribution ranged from 1.25 to 1.80. The gas chromatograph analysis indicated that 5‐bromo‐2‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene was preferentially polymerized in 90% conversion and the percentage of the head‐to‐tail content (regioregularity) was calculated to be 96%. The matrix‐assisted laser desorption/ionization time‐of‐fright mass spectrum indicated that both polymer chain ends were substituted with the hydrogen atom. The absorption maxima of polymer in CHCl3 and thin film were observed at 447 and 457 nm, respectively, which were blue‐shifted compared with poly(3‐(4′‐octylphenyl)thiophene). From the CV measurement of the polymer thin film, highest occupied molecular orbital (HOMO) (?5.31 eV) and lowest unoccupied molecular orbital (LUMO) (?3.76 eV) energy levels were calculated from the oxidation and reduction onset potentials, respectively, and the electrochemical band gap energy was determined to be 1.62 eV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Polyfluorene PF?γCD rotaxane copolymer, composed of randomly distributed 9,9‐dioctylfluorene, methyltriphenylamine (electron‐donating) and 9‐dicyanomethylenefluorene complexed with γ‐cyclodextrin (γCD) (electron‐accepting) structural units, has been synthesized by Suzuki cross‐coupling reaction. The chemical structures were proved by FTIR and 1H NMR spectroscopy. The surface morphology, thermal, optical, electrochemical behavior, and adhesion characteristics of the obtained rotaxane copolymer have been investigated and compared with those of the nonrotaxane counterpart ( PF ). Relatively high fluorescence efficiency, almost identical normalized absorbance maximum in solution and solid‐state of PF?γCD rotaxane copolymer, and a more uniform and smoother surface with lower adhesion forces provides the role of γCD encapsulation on the lower aggregation propensity. PF?γCD and PF copolymers exhibit n‐ and p‐doping processes and blue‐light emission in the film state. The optical and electrochemical band gaps (ΔEg), as well as the highest occupied molecular orbital/lowest unoccupied molecular orbital positions in an energetic diagram indicate that both copolymers are promising blue‐emitting electroluminescent materials. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

20.
The substituent effect on the radical polymerization of o‐quinodimethanes, generated by thermal isomerization of benzocyclobutenes, was investigated. Polymerizations of three benzocyclobutenes bearing electron‐withdrawing groups were studied, namely 1‐cyanobenzocyclobutene (1), 1‐chlorobenzocyclobutene (2), and 1‐bromobenzocyclobutene (3). While radical polymerizations of 2 and 3 did not afford any polymer, radical polymerization of 1 afforded n‐hexane‐insoluble polymer(Mn = 5000) in moderate yields at temperatures above 120°C. The structure of the obtained polymer was confirmed to be a ring‐opened polymer(4) by IR, 1H‐, and 13C‐NMR. The yield of the polymer increased with an increase in the initiator concentration. The polymer yield reported in this paper is higher than those of benzocyclobutenes bearing electron‐donating groups, reported previously by the authors. The semi‐empirical molecular orbital calculation supported the contribution of ring‐opening polymerization of spiro‐compounds, rejecting the possibility of 1,4‐polymerization. Lastly, radical copolymerizations of 1 with various comonomers were also performed to obtain the corresponding copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1555–1563, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号