首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neatly wrapped up: alternately stacked square-planar platinum(II) complexes inside a dinuclear coordination cage were prepared to give a discrete and soluble Pt(5) -array of the Magnus' salt type. Characterization of the complex in solution was complemented by an X-ray crystal structure of {[Pt(pyridine)(4)]? [PtCl(4)](2) @Cage}; this structure showed the linear, pentanuclear array within the cages and their circular packing into a hollow tubular superstructure.  相似文献   

2.
A robust reversed phase ion-pairing RP-HPLC method has been developed for the unambiguous speciation and quantification of all possible homoleptic and heteroleptic octahedral platinum(IV) [PtCl(6-n)Br(n)](2-) (n=0-6) as well as the corresponding platinum(II) [PtCl(4-n)Br(n)](2-) (n=0-4) complex anions using UV/Vis detection. High resolution (195)Pt NMR in more concentrated solutions of these Pt(II/IV) complexes (≥50 mM) served to validate the chromatographic peak assignments, particularly in the case of the possible stereoisomers of Pt(II/IV) complex anions. By means of IP-RP-HPLC coupled to ICP-MS or ICP-OES it is possible to accurately determine the relative concentrations of all possible Pt(II/IV) species in these solutions, which allows for the accurate determination of the photometric characteristics (λ(max) and ?) of all the species in this series, by recording of the UV/Vis absorption spectra of all eluted species, using photo-diode array, and quantification with ICP-MS or ICP-OES. With this method it is readily possible to separate and estimate the concentrations of the various stereoisomers which are present in these solutions at sub-millimolar concentrations, such as cis- and trans-[PtCl(4)Br(2)](2-), fac- and mer-[PtCl(3)Br(3)](2-) and cis- and trans-[PtCl(2)Br(4)](2-) for Pt(IV), and cis- and trans-[PtCl(2)Br(2)](2-) in the case of Pt(II). All mixed halide Pt(II) and Pt(IV) species can be separated and quantified in a single IP-RP-HPLC experiment, using the newly obtained photometric molar absorptivities, ?, determined herein at given wavelengths.  相似文献   

3.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

4.
A significant activation of the Ctbd1;N group in organonitriles upon their coordination to a platinum(IV) center has been found in the reaction of [PtCl(4)(RCN)(2)] (R = Me, Et, CH(2)Ph) with the nitrile oxides 2,4,6-R'(3)C(6)H(2)CNO (R' = Me, OMe) to give the (1,2,4-oxadiazole)platinum(IV) complexes (R = Me, R' = Me (1); R = Et, R' = Me (2); R = Et, R' = OMe (3); R = CH(2)Ph, R' = Me (4)); the [2 + 3] cycloaddition was performed under mild conditions (unless poor solubility of [PtCl(4)(RCN)(2)] precludes the reaction) starting even from complexed acetonitrile and propionitrile, which exhibit low reactivity in the free state. The reaction between complexes 2-4 and 1 equiv of Ph(3)P=CHCO(2)Me in CH(2)Cl(2) leads to the appropriate platinum(II) complexes (5-7); the reduction failed only in the case of 1 insofar as this complex is insoluble in the most common organic solvents. All the platinum compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and (1)H, (13)C((1)H), and (195)Pt NMR spectroscopies, and three of them also by X-ray crystallography. The oxadiazoles formed in the course of the metal-mediated reaction were liberated almost quantitatively from their Pt(IV) complexes by reaction of the latter (complexes 2-4) with an excess of pyridine in chloroform, giving free 1,2,4-oxadiazoles and trans-[PtCl(4)(pyridine)(2)]; the sequence of the Pt(IV)-mediated [2 + 3] cycloaddition and the liberation opens up an alternative route for the preparation of this important class of heterocycles.  相似文献   

5.
Pt(IV)-mediated addition of the sulfimide Ph2S = NH and the mixed sulfide/sulfimides o- and p-[PhS(=NH)](PhS)-C6H4 by the S=NH group to the metal-bound nitriles in the platinum(IV) complexes [PtCl4(RCN)2] proceeds smoothly at room temperature in CH2Cl2 and results in the formation of the heterodiazadiene compounds [PtCl4[NH=C(R)N=SR'Ph]2] (R' = Ph, R = Me, Et, CH2Ph, Ph; R' = o- and p-(PhS)C6H4; R = Et). While trans-[PtCl4(RCN)2] (R = Et, CH2Ph, Ph) reacting with Ph2S=NH leads exclusively to trans-[PtCl4[NH=C(R)N=SPh2]2], cis/trans-[PtCl4(MeCN)2] leads to cis/trans mixtures of [PtCl4[NH=C(Me)N=SPh2]2] and the latter have been separated by column chromatography. Theoretical calculations at both HF/HF and MP2//HF levels for the cis and trans isomers of [PtCl4[NH=C(Me)N=SMe2]2] indicate a higher stability for the latter. Compounds trans-[PtCl4[E-NH=C(R)N=SPh2]2] (R = Me, Et) and cis-[PtCl4[E-NH=C(Me)N=SPh2][Z-NH=C(Me)N=SPh2]] have been characterized by X-ray crystallography. The complexes [PtCl4[NH=C(R)N=SPh2]2] undergo hydrolysis when treated with HCl in nondried CH2Cl2 to achieve the amidines [PtCl4[NH=C(NH2)R]2] the compound with R = Et has been structurally characterized) and Ph2SO. The heterodiazadiene ligands, formed upon Pt(IV)-mediated RCN/sulfimide coupling, can be liberated from their platinum(IV) complexes [PtCl4[NH=C(R)N=SR'Ph]2] by reaction with Ph2PCH2CH2PPh2 (dppe) giving free NH=C(R)=SR'Ph and the dppe oxides, which constitutes a novel route for such rare types of heterodiazadienes whose number has also been extended. The hybrid sulfide/sulfimide species o- and p-[PhS(=NH)](PhS)C6H4 also react with the Pt(II) nitrile complex [PtCl2(MeCN)2] but the coupling--in contrast to the Pt(IV) species--gives the chelates [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh]]. The X-ray crystal structure of [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh-o]] reveals the bond parameters within the metallacycle and shows an unusual close interaction of the sulfide sulfur atom with the platinum.  相似文献   

6.
A series of platinum(II) complexes supported by the tridentate bis(phosphine)phosphido ligand bis(2-diisopropylphosphinophenyl)phosphide) [(i)Pr-PPP] have been synthesized and characterized (1-4). X-Ray structural studies of [(i)Pr-PPP]PtCl (1) and [(i)Pr-PPP]PtCH(3) (3) complexes show meridional [(i)Pr-PPP] ligands around approximately square-planar platinum centers. Structural data and NMR analysis highlight a strong trans influence for the phosphido phosphorous donor, comparable to that of the anionic aryl carbon of the classic PCP pincer complexes. A series of thermally stable [PPP]Pt(IV) compounds, including [PPP]Pt(CH(3))(2)X [X = I (5) and SbF(6) (6)], were also synthesized. The study of the binding affinity of SO(2) and NO to complex 1 has also been addressed.  相似文献   

7.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with R'OH (R' = Me, Et, n-Pr, i-Pr, n-Bu) at 45 degrees C in all cases allowed the isolation of the trans-[PtCl(4)[(E)-NH=C(R)OR'](2)] imino ester complexes, while the reaction between cis-[PtCl(4)(RCN)(2)] and the least sterically hindered alcohols (methanol and ethanol) results in the formation of cis-[PtCl(4)[(E)-NH=C(R)OR'](2)] (R/R' = Me/Me) or trans-[PtCl(4)[(E)-NH=C(Et)OR'](2)] (R' = Me, Et), the latter being formed via thermal isomerization (ROH, reflux, 3 h) of the initially formed corresponding cis isomers. The reaction between alcohols R'OH and cis-[PtCl(4)(RCN)(2)] (R = Me, R' = Et, n-Pr, i-Pr, n-Bu; R = Et; R' = n-Pr, i-Pr, n-Bu), exhibiting greater R/R' steric congestion, allowed the isolation of cis-[PtCl(4)[(E)-NH=C(R)OR'][(Z)-NH=C(R)OR']] as the major products. The alcoholysis reactions of poorly soluble [PtCl(4)(RCN)(2)] (R = CH(2)Ph, Ph) performed under heterogeneous conditions, directly in the appropriate alcohol and for a prolonged time and, for R = Ph, with heating led to trans-[PtCl(4)[(E)-NH=C(R)OR'](2)] (R = CH(2)Ph, R' = Me, Et, n-Pr, i-Pr; R = Ph, R' = Me) isolated in moderate yields. In all of the cases, in contrast to platinum(II) systems, addition of R'OH to the organonitrile platinum(IV) complexes occurs under mild conditions and does not require a base as a catalyst. The formed isomerically pure (imino ester)Pt(IV) complexes can be reduced selectively, by Ph(3)P=CHCO(2)Me, to the corresponding isomers of (imino ester)Pt(II) species, exhibiting antitumor activity, without change in configuration of the imino ester ligands. Furthemore, the imino esters NH=C(R)OR' can be liberated from both platinum(IV) and platinum(II) complexes [PtCl(n)[H=C(R)OR'](2)] (n = 2, 4) by reaction with 1,2-bis(diphenylphosphino)ethane and pyridine, respectively. All of the prepared compounds were characterized by elemental analyses (C, H, N), FAB mass spectrometry, IR, and (1)H, (13)C[(1)H], and (195)Pt (metal complexes) NMR spectroscopies; the E and Z configurations of the imino ester ligands in solution were determined by observation of the nuclear Overhauser effect. X-ray structure determinations were performed for trans-[PtCl(4)[(E)-NH=C(Me)OEt](2)] (2), trans-[PtCl(4)[(E)-NH=C(Et)OEt](2)] (10), trans-[PtCl(4)[(E)-NH=C(Et)OPr-i](2)] (11), trans-[PtCl(4)[(E)-NH=C(Et)OPr-n](2)] (12), and cis-[PtCl(4)[(E)-NH=C(Et)OMe](2)] (14). Ab initio calculations have shown that the EE isomers are the most stable ones for both platinum(II) and platinum(IV) complexes, whereas the most stable configurations for the ZZ isomers are less stable than the respective EZ isomers, indicating an increase of the stability on moving from the ZZ to the EE configurations which is more pronounced for the Pt(IV) complexes than for the Pt(II) species.  相似文献   

8.
The coordination chemistry of the four phosphines, P{C6H3(o-CH3)(p-Z)}3 where Z = H (1a) or OMe (1b) and P{C6H3(o-CHMe2)(p-Z)}3 Z = H (1c) or OMe (1d) with platinum(II) and palladium(II) is reported. Mononuclear complexes trans-[PdCl2L2](L = 1a,b) and trans-[PtCl2L2](L = 1a-c) have been prepared and the crystal structures of trans-[PdCl2(1b)2] and trans-[PtCl2(1c)2] as their dichloromethane solvates have been determined. The structures show that in these complexes, the ligands adopt g+ g+ a conformations. Examination of the Cambridge Structural Database confirms this to be one of only two conformer types that tri-o-tolylphosphines adopt and the only viable conformer in 4 and 6 coordinate complexes. The binuclear complexes trans-[Pd2Cl4L2](L = 1c,d) are formed even when an excess of the bulky 1c,d is used in the synthesis and the crystal structure of trans-[Pd2Cl4(1c)2] as its chloroform solvate is reported. Reaction of [PtCl2(NCBu(t))2] with 1b-d in refluxing toluene gave the cycloplatinated species [Pt2Cl2(L - H)2] where L - H is phosphine 1b-d deprotonated at one of the ortho-methyl carbon atoms. Variable temperature 31P and 1H NMR spectroscopy reveals that all the complexes reported are fluxional. The processes are analysed in terms of restricted P-C and P-M rotations that give rise to diastereoisomeric rotamers because of the helically chiral orientations of the aryl substituents. For the complexes of the bulky ligands 1c,d, rotation about the P-C bond is slow on the NMR timescale even up to 75 degrees C. The crystal structure of the cyclometallated complex [Pt2Cl2(1d - H)2] has been determined.  相似文献   

9.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

10.
The treatment of cis-[Pt(II)(L(1a/b)-S,O)2] complexes of N,N-diethyl- (HL(1a)) and N,N-di(n-butyl)-N'-benzoylthiourea (HL(1b)) with I2 or Br2 in chloroform, leads to rapid oxidative addition to yield several geometric isomers of [Pt(IV)(L-S,O)(2)X(2)](X = I, Br); the reactions can be monitored by (195)Pt NMR and UV-visible spectrophotometry. The products cis-[Pt(IV)(L(1a)-S,O)2I2] and cis-[Pt(IV)(L(1a)-S,O)2Br2], which have been isolated and structurally characterized, are the first-reported crystal structures of complexes of Pt(iv) with this class of ligand. Molecules of 6 pack such that the I-Pt-I axes are essentially aligned, with unusually close nearest-neighbour iodide contacts (3.553(1)A). These short II intermolecular interactions lead to infinite chains of weakly connected molecules in crystals of the compound. No such interactions are evident in the corresponding crystals of . Reaction of the Pt(II) complex of N-propyl-N'-benzoylthiourea (H2L(2a))cis-/trans-[Pt(II)(H2L(2a)-S)2Br2] with Br2 also results in oxidative addition, to yield trans-Pt(IV)(H2L(2a)-S)2Br4. By contrast, treatment of cis-/trans-[Pt(II)(H2L(2a)-S)2I2] with I2 does not lead to an oxidative addition product, yielding instead an interesting iodine inclusion compound of Pt(II), trans-[Pt(II)(H2L(2a)-S)2I2.I2. In 8, short intermolecular II distances of 3.453(1)A between I2 and coordinated iodide ions in trans-[Pt(II)(H(2)L(2a)-S)(2)I(2)] molecules, result in infinite chains of weakly linked trans-[Pt(II)(H2L(2a)-S)2I2]...I2 groups in the lattice. However, the empirically estimated bond order of 0.75 for the included I2 molecules does not support the possible existence of discrete tetraiodide ions (I4(2-)) in the lattice of compound 8.  相似文献   

11.
Interaction of cyanobacteria (Plectonema boryanum UTEX 485) with aqueous platinum(IV)-chloride (PtCl(4) degrees ) has been investigated at 25-100 degrees C for up to 28 days, and 180 degrees C for 1 day. The addition of PtCl(4) degrees to the cyanobacteria culture initially promoted the precipitation of Pt(II)-organic material as amorphous spherical nanoparticles (< or =0.3 microm) in solutions and dispersed nanoparticles within bacterial cells. The spherical Pt(II)-organic nanoparticles were connected into long beadlike chains by a continuous coating of organic material derived from the cyanobacterial cells, and aged to nanoparticles of crystalline platinum metal with increase in temperature and reaction time. The stepwise reduction for the formation of platinum nanoparticles in the presence of cyanobacteria was deduced to be Pt(IV) [PtCl(4) degrees ] --> Pt(II) [Pt(II)-organics] --> Pt(0). Spherical platinum-bearing nanoparticles were not present in abiotic PtCl(4) degrees experiments conducted under similar conditions and duration.  相似文献   

12.
New Pt complexes of chelating bisguanidines and guanidinate ligands were synthesized and characterized. 1,2-Bis(N,N,N',N'-tetramethylguanidino)benzene (btmgb) was used as a neutral chelating bisguanidine ligand, and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate (hpp(-)) as a guanidinate ligand. The salts [btmgbH](+)[HOB(C(6)F(5))(3)](-) and [btmgbH(2)]Cl(2) and the complexes [(btmgb)PtCl(2)], [(btmgb)PtCl(dmso)](+)[PtCl(3)(dmso)](-), and [(btmgb)PtCl(dmso)](+)[Cl(-)] were synthesized and characterized. In the [btmgbH](+) cation the proton is bound to only one N atom. In the other complexes, both imine N atoms are coordinated to the Pt(II), thus adopting a eta(2)-coordinational mode. The hpp(-) anion, which usually prefers a bridging binding mode in dinuclear complexes, is eta(2)-coordinated in the Pt(IV) complex [(eta(2)-hpp)(hppH)PtCl(2){N(H)C(O)CH(3)}], which is formed (in low yield) by reaction between cis-[(hppH)(2)PtCl(2)] and H(2)O(2) in CH(3)CN.  相似文献   

13.
The reaction between [Pt(nbe)3] (nbe=norbornene), two equivalents of the phosphines PPh3, PMePh2 or PMe2Ph and 1 equivalent of BCl3 affords the platinum dichloroboryl species [PtCl(BCl2)(PPh3)2], [PtCl(BCl2)(PMePh2)2] and [PtCl(BCl2)(PMe2Ph)2]. All three complexes were characterised by X-ray crystallography and reveal that the boryl group lies trans to the chloride. With PMe3 as the phosphine, the complex [PtCl(BCl2)(PMe3)2] is isolated in high yield as a white crystalline powder although crystals suitable for X-ray crystallography were not obtained. Crystals were obtained of a product shown by X-ray crystallography to be the unusual dinuclear species [Pt2(BCl2)2(PMe3)4(micro-Cl)][BCl4] which reveals an arrangement in which two square planar platinum(II) centres are linked by a single bridging chloride which is trans to a BCl2 group on each platinum centre. The reaction of [PtCl(BCl2)(PMe3)2] with NEt3 or pyridine (py) affords the adducts [PtCl{BCl2(NEt3)}(PMe3)2] and [PtCl{BCl2(py)}(PMe3)2], respectively, both characterised spectroscopically. The reaction between [PtCl(BCl2)(PMe3)2] and either 4 equivalents of NHEt2 or piperidine (pipH) results in the mono-substituted boryl species [PtCl{BCl(NEt2)}(PMe3)2] and [PtCl{BCl(pip)}(PMe3)2], respectively, the former characterised by X-ray crystallography. Treatment of either [PtCl(BCl2)(PMe3)2] (in the presence of excess NEt3) or [PtCl{BCl(NEt2)}(PMe3)2] with catechol affords the B(cat) (cat=catecholate) derivative [PtCl{B(cat)}(PMe3)2] which is also formed in the reaction between [Pt(PMe3)4] and ClB(cat) and also from the slow decomposition of [Pt{B(cat)}2(PMe3)2] in dichloromethane over a period of months. The compound [Pt{B(cat)}2(PMe3)2] was prepared from the reaction between [Pt(PMe3)4] and B2(cat)2.  相似文献   

14.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

15.
The 2-pyridinecarboxylate (2-pyca) platinum(IV) complex [2-pycaH2][PtCl4(2-pyca)].H2O, 1, has been synthesised from K2[PtCl4] following the hydrolysis of 2-pyridinehydroxamic acid (2-pyhaH) in the presence of H2O2, and directly from K2[PtCl6] and picolinic acid. Structural characterisation of 1 reveals octahedral geometry about platinum(IV) consisting of a (N,O)-bidentate pyridinecarboxylate ligand and four chloride ligands. A mechanism for the hydrolysis of 2-pyridinehydroxamic acid to 2-pyridinecarboxylic acid is proposed. Two novel coordination modes of hydroxamic acids to platinum(II) are also reported. The dinuclear platinum ammine hydroximato complex, [{cis-Pt(NH3)2}2(mu-2-pyhaH(-1))](ClO4)2.H2O, 3, has been synthesised where the two platinum(II) centres are bridged via(O,O) and (N,N) coordination. The latter coordination mode is via the hydroximate nitrogen and the pyridine nitrogen. The corresponding mononuclear platinum(II) pyridinehydroxamate complex, [cis-Pt(NH3)2(2-pyha)]ClO4, 4, has been synthesised. Spectroscopic studies indicate that the coordination mode is through the pyridine nitrogen and hydroxamate oxygen atoms (N,O).  相似文献   

16.
A comparison between experimental and calculated gas-phase as well as the conductor-like screening model DFT (195)Pt chemical shifts of a series of octahedral [PtX(6-n)Y(n)](2-) complexes for X = Cl, Br, F, I was carried out to assess the accuracy of computed NMR shielding and to gain insight into the dominant σ(dia), σ(para) and σ(SO) shielding contributions. The discrepancies between the experimental and the DFT-calculated (195)Pt chemical shifts vary for these complexes as a function of the coordinated halide ions, the largest being obtained for the fluorido-chlorido and fluorido-bromido complexes, while negligible discrepancies are found for the [PtCl(6-n)Br(n)](2-) series; the discrepancies are somewhat larger where a significant deviation from the ideal octahedral symmetry such as for the geometric cis/trans or fac/mer isomers of [PtF(6-n)Cl(n)](2-) and [PtF(6-n)Br(n)](2-) may be expected. The discrepancies generally increase in the order [PtCl(6-n)Br(n)](2-) < [PtBr(6-n)I(n)](2-) < [PtCl(6-n)I(n)](2-) < [PtF(6-n)Br(n)](2-) ≈ [PtF(6-n)Cl(n)](2-), and show a striking correlation with the increase in electronegativity difference Δχ between the two halide ligands (X(-) and Y(-)) bound to Pt(IV) for these anions: 0.09 < 0.52 < 0.63 < 1.36 ≈ 1.27, respectively. The computed (195)Pt sensitivity to Pt-X bond displacement, ?(δ(195)Pt)/?(ΔPt-X), of these complexes is very large and depends on the halide ion, decreasing from 24 800, 18 300, 15 700 to 12 000 ppm/? for [PtF(6)](2-), [PtCl(6)](2-), [PtBr(6)](2-) and [PtI(6)](2-), respectively.  相似文献   

17.
Treatment of the bridging bidentate 1,Z-bis(aminopropyl)-1,Z-dicarba-closo-dodecaborane(12)(1,Z-bis(aminopropyl)-1,Z-carborane) ligands of the type 1,Z-[H(2)N(CH(2))(3)](2)-1,Z-C(2)B(10)H(10)(L(1), Z= 7, 5) or (L(2), Z= 12, 6) with two equivalents of trans-[PtClI(2)(NH(3))](-), followed by halogen ligand metathesis with AgOTf and HCl((aq)) afforded the novel diplatinum(II)-amine species cis-[[PtCl(2)(NH(3))](2)L(n)](7(n= 1) or 8(n= 2), respectively). Similarly, the reaction of L(1) or L(2) with the labile trans-[PtCl(dmf)(NH(3))(2)](+) afforded trans-[[PtCl(NH(3))(2)](2)L(n)](OTf)(2)(9(n= 1) or 10(n= 2), respectively) in good yield and purity. However, isolation of the analogous 1,2-carborane complexes was not possible owing to decomposition reactions that led to extensive degradation of the carborane cage and reduction of the metal centre. The mixed dinuclear complex [cis-[PtCl(2)(NH(3))]-L(1)-trans-[PtCl(NH(3))(2)]]OTf (19) was prepared by treatment of the Boc-protected amine ligand 1-[(Boc)(2)N(CH(2))(3)]-7-[H(2)N(CH(2))(3)]-1,7-C(2)B(10)H(10)(L(3), 15) with trans-[PtCl(dmf)(NH(3))(2)](+) to yield trans-[PtCl(NH(3))(2)L(3)]OTf (16), followed by acid deprotection of the pendant amine group, complexation with trans-[PtClI(2)(NH(3))](-), and halogen ligand metathesis using AgOTf and HCl((aq)). A novel trinuclear species containing 5 was prepared by the addition of two equivalents of 15 to the labile precursor cis-[Pt(dmf)(2)(NH(3))(2)](2+) followed by acid deprotection of the pendant amine groups. Further complexation with two equivalents of trans-[PtClI(2)(NH(3))](-) followed by halogen ligand metathesis using AgOTf and HCl((aq)) afforded the triplatinum(II)-amine species [cis-[Pt(NH(3))(2)(L(1))(2)]-cis-[PtCl(2)(NH(3))](2)](OTf)(2)(23). Complexes 7-10, 19 and 23 represent the first examples of multinuclear platinum(ii)-amine derivatives containing carborane cages. Preliminary in vitro cytotoxicity studies for selected complexes are also reported.  相似文献   

18.
Three dipeptide complexes of the form K[Pt(IV)(dipep)Cl3] and two complexes of the form K[Pt(IV)(Hdipep)Cl4] were newly prepared and isolated. The platinum(IV) complexes containing the dipeptide were obtained directly by adding KI to H2[PtCl6] solution. The reaction using KI was rapidly completed and provided analytically pure yellow products in the form of K[Pt(dipeptide)Cl3] for H2digly, H2gly(alpha)-ala, H2alpha-alagly and H2di(alpha)-ala. The K[Pt(IV)(digly)Cl3] complex crystallizes in the monoclinic space group P2(1)/c with unit cell dimensions a = 10.540(3) A, b = 13.835(3) A, c = 8.123(3) A, beta = 97.01(2) degrees, Z = 4. The crystal data represented the first report of a Pt(IV) complex with a deprotonated peptide, and this complex has the rare iminol type diglycine(2-) coordinating to Pt(IV) with the bond lengths of the C2-N1 (amide) bond (1.285(13) A). The 195Pt NMR peaks of the K[Pt(IV)(dipep)Cl3] and the K[Pt(IV)(Hdipep)Cl4] complexes appeared at about 270 ppm and at about -130 ppm, respectively, and were predicted for a given set of ligand atoms. While the K[Pt(IV)(x-gly)Cl3] complexes, where x denotes the glycine or alpha-alanine moieties, were easily reduced to the corresponding platinum(II) complexes, the K[Pt(IV)(x-alpha-ala)Cl3] complexes were not reduced, but the Cl- ion was substituted for OH- ion in the reaction solution. The K[Pt(digly)Cl3] and K[Pt(gly-L-alpha-ala)Cl3] complexes inhibited the growth of Candida albicans, and the antifungal activities were 3- to 4-fold higher than those of cisplatin. The metabolism of glucose in C. albicans was strongly inhibited by K[Pt(digly)Cl3] and K[Pt(gly-L-alpha-ala)Cl3] but not by the antifungal agent fluconazole.  相似文献   

19.
The reactions of [Ag(NH=CMe2)2]ClO4 with cis-[PtCl2L2] in a 1:1 molar ratio give cis-[PtCl(NH=CMe2)(PPh3)2]ClO4 (1cis) or cis-[PtCl(NH=CMe2)2(dmso)]ClO4 (2), and in 2:1 molar ratio, they produce [Pt(NH=CMe2)2L2](ClO4)2 [L = PPh3 (3), L2= tbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl (4)]. Complex 2 reacts with PPh3 (1:2) to give trans-[PtCl(NH=CMe2)(PPh3)2]ClO(4) (1trans). The two-step reaction of cis-[PtCl2(dmso)2], [Au(NH=CMe2)(PPh3)]ClO4, and PPh3 (1:1:1) gives [SP-4-3]-[PtCl(NH=CMe2)(dmso)(PPh3)]ClO4 (5). The reactions of complexes 2 and 4 with PhICl2 give the Pt(IV) derivatives [OC-6-13]-[PtCl3(NH=CMe2)(2)(dmso)]ClO4 (6) and [OC-6-13]-[PtCl2(NH=CMe2)2(dtbbpy)](ClO4)2 (7), respectively. Complexes 1cis and 1trans react with NaH and [AuCl(PPh3)] (1:10:1.2) to give cis- and trans-[PtCl{mu-N(AuPPh3)=CMe2}(PPh3)2]ClO4 (8cis and 8trans), respectively. The crystal structures of 4.0.5Et2O.0.5Me2CO and 6 have been determined; both exhibit pseudosymmetry.  相似文献   

20.
The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive intermediates along the reaction coordinate. The aquation process occurs via weaker Pt-Cl-Hg or Pt-Cl-HgCl bridged complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号