首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of sulfonamide antibiotics in aquatic environments poses potential ecological risks and dangers to human health. In this study, porous resins as adsorbents for the removal of two sulfonamides, sulfadiazine and sulfadimidine, from aqueous solutions were evaluated. Activated carbon F-400 was included as a comparative adsorbent. Despite the different surface properties and pore structures of the three resins, similar patterns of pH-dependent adsorption were observed, implying the importance of sulfonamide molecular forms to the adsorption process on the resins. Sulfonamide adsorption to the three resins exhibited different ionic strengths and temperature dependence consistent with sulfonamide speciation and the corresponding adsorption mechanism. Adsorption of sulfadiazine to F-400 was relatively insensitive to pH and ionic strength as micropore-filling mainly contributed to adsorption. The adsorption mechanism of sulfadiazine to the hypercrosslinked resin MN-200 was similar to that of the macroporous resin XAD-4 at lower pH values, whereas it was almost identical to the aminated resin MN-150 at higher pH. This work provided an understanding of adsorption behavior and mechanism of sulfonamide antibiotics on different adsorbents and should result in more effective applications of porous resin for antibiotics removal from industrial wastewater.  相似文献   

2.
3.
The adsorbed amounts of water vapor onto polyacrylic polymer (polymer ×10) were measured using a thermogravimetry method as a function of pressure at 298 and 313 K. The adsorption isotherms are categorized to type II isotherms by IUPAC classification leading to a hysteresis loop between adsorption and desorption branches. The current study was completed by the measurement of the adsorption heats at 298 K using a differential scanning calorimetry. The calorimetric curves showed two adsorption heats domains. These domains have been attributed to the adsorption of “equivalent monolayer” and the condensation of water between polymeric chains. The correlation of experimental data to some chosen theoretical models shows that the GAB model is the most adequate to describe water vapor sorption isotherms.  相似文献   

4.
In this research, naphthalene was adopted as the representative model compound of PAHs, and static adsorption of naphthalene from aqueous solution onto three commercial polymeric adsorbents with different pore structure was investigated. Nonlinear isotherms models, i.e., Freundlich, Langmuir, and Polanyi-Dubinin-Manes (PDM) models were tested to fit experimental data, and the experimental data were found to fit well by the PDM model. Through both isotherm modeling and constructing "characteristic curve," Polanyi theory was useful to describe the adsorption process of naphthalene by polymeric adsorbents, providing evidence that a micropore filling phenomenon was involved during the adsorption process. In addition, a good linear correlation was obtained between the naphthalene adsorption capacities and the micropore volume of adsorbents (Vmicro), whereas no linear relationship was found between the naphthalene adsorption capacities and the specific surface area of adsorbents. Based on the PDM model, the micropore volumes of adsorbents was introduced to normalize the equilibrium adsorbed volume (qv), plots of qv/V(micro) vs adsorption potential density for naphthalene on three different polymeric adsorbents were collapsed to a single correlation curve, which would be of great benefit to predict the adsorption capacity of adsorbent for the purpose of adsorption engineering design.  相似文献   

5.
The kinetics of the isothermal adsorption of ethanol from an aqueous solution onto a hydrophobic zeolite of the NaZSM-5 type in the temperature range 298–333 K was investigated. Specific shape parameters of the adsorption degree curves were determined. The changes in the specific shape parameters of the adsorption degree curves with temperature were determined. The kinetic parameters of ethanol adsorption (Ea,ln A) were determined by the initial rate, the saturation rate and the maximum rate methods as well as from the Johnson, Mehl and Avramy equation. The kinetic model of ethanol adsorption kt=[1−(1−α)1/3] was determined by the “model fitting” method. Ethanol adsorption from aqueous solution onto NaZSM-5 is a kinetically controlled process limited by the rate of three-dimensional movement of the boundary layer of the adsorption phase. A model for the mechanism of ethanol adsorption onto NaZSM-5 is suggested on the basis of the kinetic model. Ethanol molecules in aqueous solution are associated in clusters. The activation energy of the adsorption process corresponds to the energy required for the detachment of an ethanol molecule from a cluster and its adsorption onto the zeolite.  相似文献   

6.
The magnetic poly(ethylene glycol dimethacrylate-n-vinylimidazole) (Fe3O4@poly (EGDMA@VIM)) microspheres were prepared by suspension polymerization method using magnetite Fe3O4 nano-powder and the porosity, morphology, chemical composition and structure of the magnetic polymer microspheres were characterized. The specific surface area and swelling ratio of the Fe3O4@poly(EGDMA@VIM) microspheres were found to be 278.6?m2·g1 and 48%, respectively. The Fe3O4@poly(EGDMA@VIM) microspheres were used as an adsorbent for phenol removal. The effects of the parameters such as adsorbent dosage, temperature, pH and initial concentration of phenol solutions on the adsorption were investigated. The experimental adsorption equilibrium data obtained were fitted with Langmuir, Freundlich and Dubinin-Radushkevich isotherms and the pseudo-first-order, pseudo-second-order and intra–particle diffusion kinetic models. The adsorption equilibrium data agreed well with the Freundlich isotherm and the pseudo-second-order kinetic model. The maximum capacity of the Fe3O4@poly(EGDMA@VIM) microspheres was calculated to be 33.83?mg·g1 at 298?K and natural pH from Langmuir isotherm. The Fe3O4@poly(EGDMA@VIM) microspheres were found to be reusable for removal of phenol after desorption for several times. The result indicated that the Fe3O4@poly(EGDMA@VIM) microspheres are potential candidate for removal of phenol in wastewaters.  相似文献   

7.
Macroporous crosslinked poly(p-vinylbenzylaniline) (PVBA) was synthesized and its adsorption isotherms for phenol in hexane and in aqueous solution were comparatively measured. It was shown that the adsorption isotherms in hexane were straight lines and passed through the origin, whereas those in aqueous solution could be simulated by Freundlich isotherms. Adsorption enthalpies of phenol onto PVBA were calculated, and the results indicated that the adsorption was an exothermic process. Comparison of the adsorption behaviors of PVBA, poly(p-vinylbenzylmethylamine) (PVBMA), and poly(p-vinylbenzyl-p-nitroaniline) (PVBNA) for phenol in hexane suggested that hydrogen bonding and pi-pi stacking were primarily responsible for the adsorption, the nitrogen atom and benzene ring of PVBA acted as hydrogen bonding acceptors and formed hydrogen bonding with the hydrogen atom of hydroxyl group of phenol. Investigation of the adsorption mechanism in aqueous solution revealed that hydrogen bonding and hydrophobic interaction were the main driving forces.  相似文献   

8.
We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC < CSAC . This implies that the chemical potential that the surfactant needs to adsorb is higher than its maximum chemical potential, and hence, the surfactant will not adsorb. One of the main goals of our model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.  相似文献   

9.
Shivaji Sircar 《Adsorption》2017,23(7-8):917-922
An alternative to the conventional ‘pore filling model’ for describing Gibbsian surface excess (GSE) isotherm from a liquid mixture on a porous adsorbent is proposed where the adsorbed phase volume is treated as a variable. The new model is tested using GSE isotherm data on various micro and mesoporous adsorbents. The adsorbed phase volume is found to be system specific but always less than the adsorbent pore volume, irrespective of the pore size.  相似文献   

10.
Macroporous poly(methyl methacrylate-co-divinylbenzene) (PMMA), interpenetrating polymer adsorbent based on poly(styrene-co-divinylbenzene) (PS) and poly(methyl methacrylate-co-divinylbenzene) (PMMA/PS), and macroporous cross-linked poly(N-p-vinylbenzyl acetylamide) (PVBA) were prepared for the adsorption of phenol from cyclohexane. The sorption isotherms of phenol on the three polymeric adsorbents were measured and fitted to Langmuir and Freundlich isotherms. It is shown that the Langmuir isotherm, which is based on a homogeneous surface model, is unsuitable to describe the sorption of phenol on the adsorbents from nonaqueous solution and the Freundlich equation fits the tested three adsorption systems well. The isosteric enthalpy was quantitatively correlated with the fractional loading for the sorption of phenol onto the three polymeric adsorbents. The surface energetic heterogeneity patterns of the adsorbents were described with functions of isosteric enthalpy. The results showed that the tested three polymeric adsorbents exhibited different surface energetic heterogeneity patterns. The initial isosteric enthalpy of phenol sorption on polymeric adsorbent has to do with the surface chemical composition and is free from the pore structure of the polymeric adsorbent matrix. Forming hydrogen bonds between phenol molecules and adsorbent is the main driving force of phenol sorption onto PVBA and PMMA adsorbent from nonaqueous solution. When phenol is adsorbed on PMMA/PS, pi-pi interaction resulting from the stacking of the benzene rings of the adsorbed phenol molecules and the pendant benzene ring of adsorbent is involved.  相似文献   

11.
The adsorption equilibrium and kinetics of single and binary component copper ions and phenol onto powdered activated carbon (PAC), alginate beads and alginate-activated carbon beads (AAC) were studied. Adsorption equilibrium data for single component copper ions and phenol onto the adsorbents could be represented by the Langmuir equation. Multicomponent equilibrium data were correlated by the extended Langmuir and ideal adsorbed solution theory (IAST). The IAST gave the best fit to our data. The amount of copper ions adsorbed onto the AAC beads in the binary component was greater than that of phenol. The internal diffusion coefficients were determined by comparing the experimental concentration curves with those predicted from surface diffusion and pore diffusion model.  相似文献   

12.
Three-phase separation for Triton X-114 or Triton X-100 solutions with addition of hydrophobically modified hydroxyethyl cellulose was investigated experimentally. When the surfactant concentration was high enough, the solution slightly above the cloud point could separate into three macroscopic phases: a cloudy phase in between a clear phase and a bluish, translucent phase. The rate of phase separation was very low with the formation of the clear and cloudy phases followed by the emergence of the bluish phase. The volume fraction of the cloudy phase increases linearly with the global polymer concentration, whereas the volume fraction of the bluish phase increases linearly with the global surfactant concentration. Composition analyses found that most of the polymer stayed in the cloudy phase, as opposed to most of the surfactant in the bluish phase. The interesting phase behavior can be explained by an initial associative phase separation followed by a segregative phase separation in the cloudy phase.  相似文献   

13.
Adsorption of non‐ionic surfactant (ethoxylated nonyl phenol; ENP) from aqueous solution is studied at 30 °C using butyl rubber (II R) mixed with two types of carbon black: high abrasion furnace (HAF) and general purpose furnace (GPF) as fillers with different concentrations. The results indicate that butyl loaded with HAF is more efficient as adsorbent surface than that loaded with GPF irrespective of the carbon black concentration and the adsorption increases as the immersion time increases. The experimental data of adsorption isotherms could be fitted to the Langmuir equation below the critical micelle concentration (CMC) of ENP. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Oil-palm shells, a biomass by-product from palm-oil mills, were converted into activated carbons by vacuum or nitrogen pyrolysis, followed by steam activation. The effects of pyrolysis environment, temperature and hold time on the physical characteristics of the activated carbons were studied. The optimum pyrolysis conditions for preparing activated carbons for obtaining high pore surface area are vacuum pyrolysis at a pyrolysis temperature of 675 °C and 2 h hold time. The activation conditions were fixed at a temperature of 900 °C and 1 h hold time. The activated carbons thus obtained possessed well-developed porosities, predominantly microporosities. For the pyrolysis atmosphere, it was found that significant improvement in the surface characteristics of the activated carbons was obtained for those pyrolysed under vacuum. Adsorption capacities of activated carbons were determined using phenol solution. For the activated carbons pyrolysed under optimum vacuum conditions, a maximum phenol adsorption capacity of 166 mg/g of carbon was obtained. A linear relationship between the BET surface area and the adsorptive capacity was shown.  相似文献   

16.
A novel procedure is developed for the quantitative determination of volatile organics in the gas phase over samples. Substances were extracted and preconcentrated from the gas phase on porous polymer adsorbents under the conditions of thermodynamic equilibrium, followed by back extraction from the adsorbent using organic solvents. The final monitoring was performed by capillary gas chromatography with an internal standard. The influence of adsorption time and the concentration of substances in an aqueous solution on the degree of extraction were also studied; linear correlations between the quantities of substances in the gas and aqueous phases were found. The method was used for the determination of volatile substances in the gas phase over liquid and solid matrixes of different origin.  相似文献   

17.
A new colloidal silver system is presented in which a fine colloidal silver is in situ deposited onto functionalized porous poly(ethylene glycol dimethacrylate) [poly(EGDMA)] microspheres. The effectiveness of the silver deposition has been investigated through an examination of the surface characteristics of poly(EGDMA) microspheres. The result reported in this study demonstrate that the control of the surface area and surface functionality (in this study, a hydroxyl group) of poly(EGDMA) microspheres is an important factor that practically determines the degree of deposition of colloidal silver. X‐ray analysis has shown that silver nanoparticles are dispersed evenly on inner and outer surfaces and have a face center cubic phase. Preservation testing has shown that silver‐containing poly(EGDMA) microspheres have powerful antibacterial properties and, therefore, have significant potential as new preservatives. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2551–2557, 2004  相似文献   

18.
The pressure dependence of liquid-liquid equilibria in weakly interacting binary macromolecular systems (homopolymer solutions and blends) will be discussed. The common origin of the separate high-temperature/low-temperature and high-pressure/low-pressure branches of demixing curves will be demonstrated by extending the study into the region of metastable liquid states including the undercooled, overheated and stretched states (i.e. states at negative pressures). The seemingly different response of the UCST-branch of solutions and blends when pressurized (pressure induced mixing for most polymer solutions, pressure induced demixing for most blends) will be explained in terms of the location of a hypercritical point found either at positive (most solutions) or negative pressure (most blends). Further, it is shown that the pressure dependence of demixing of homopolymer solutions and blends may be described using a ‘master-curve’ which, however, is sometimes partly masked by degradation or by vapour-liquid and/or solid-liquid phase transitions. Experimental results demonstrating the extension of liquid-liquid phase boundary curves into the metastable regions will be presented, and the existence of solubility islands in the vicinity of the hypercritical points discussed.  相似文献   

19.
Titration calorimetry has been used to study the effect of the addition of two primary alcohols, 1-butanol and 1-heptanol, to the aqueous phase on the thermal effects of micellization of benzyldimethyldodecylammonium bromide (BDDAB) as well as its adsorption onto nonporous Spherosil XO15M and onto porous aluminosilicate SiAl32d22 possessing uniformly sized mesopores. A linear decrease of the critical micelle concentration (CMC) of the cationic surfactant with the additive content was inferred from the specific conductivity measurements. All adsorption and calorimetry experiments were carried out at 298 K and at a fixed alcohol content (0.01 mol kg(-1)) either in deionized water or in a 0.01 mol kg(-1) NaBr solution. Dilution calorimetry measurements allowed determination of the cumulative molar enthalpy changes and a new analysis of these data was proposed to calculate easily the enthalpy of micellization per mole of BDDAB, Delta(mic)h, and the CMC value. The alcohol addition was shown to render the micellization phenomenon more exothermic, the effect being larger as the chain length of alcohol increased. These effects were attributed to the location of alcohol molecules between the surfactant units, their hydroxyl groups close to the surfactant head-groups, in competition with the surfactant counterions. The individual isotherms of alcohol and surfactant adsorption onto XO15M and SiAl32d22 were determined. The plots of the pseudo-differential molar enthalpy of displacement, Delta(dpl)h, against the surface coverage by the surfactant cation, Theta(BDDA+), were derived from the titration calorimetry data. The formation of surface-bound aggregates was thought to be a prerequisite for alcohol coadsorption at the solid-solution interface. At least two different types of adsolubilization sites were postulated, one of the sites being the same as in micelles and the other related to the contact area between the hydrophobic surfactant tails and the equilibrium bulk solution. Coadsorption (adsolubilization) of alcohol molecules at such sites was found to increase the exothermic contribution to the enthalpy of displacement per mole of the BDDA+ adsorbed.  相似文献   

20.
The inkjet printing of a polymeric solution into a porous substrate was studied, with the focus on phenomena occurring within the pore space during infiltration. Lines of aqueous polyacrylic acid (PAA) solution were printed onto the surface of porous, high-green-density ceramic powder beds. The PAA is a binder for the ceramic particles, allowing removal of the printed line structure ("primitive") and characterization of the extent of polymer penetration. Large differences in cross section of the retrieved printed structure were observed between ceramic systems and for different specific surface area powders. A mechanism for "filtration" of the polymer by adsorption onto the ceramic particle surfaces during infiltration was proposed. The adsorption of PAA onto Al2O3, SiO2, and TiO2 was characterized via adsorption isotherms, and the trend of primitive cross section with PAA adsorption was consistent with the filtration hypothesis, as was the variation with powder-specific surface area. These results can be generalized to other systems where a solution is inkjet printed onto a porous substrate (e.g., inks on plain paper, porous coated papers, etc.) Utilization of the adsorption effects may allow confinement of the solute molecules (e.g., colorant) to a small region near the substrate surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号