首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe herein the synthesis of a triptycene‐based surfactant designed with the ability to solubilise single‐walled carbon nanotubes (SWNTs) and C60 in water through non‐covalent interactions. Furthermore, an amphiphilic naphthalene‐based surfactant with the same ability to solubilise SWNTs and C60 has also been prepared. The compounds synthesised were designed with either two ionic or non‐ionic tails to ensure a large number of supramolecular interactions with the solvent, thereby promoting strong solubilisation. The surfactants produced stable suspensions in which the SWNTs are dispersed and the surfactant/SWNT complexes formed are stable for more than one year. UV/Vis/NIR absorption spectroscopy, TEM and AFM were employed to probe the solubilisation properties of the dispersion of surfactants and SWNTs in water.  相似文献   

2.
Photon correlation spectroscopy and freeze-fracture electron microscopy have been used to determine the ability of a range of micelle-forming, polyoxyethylene (20) sorbitan monoesters (Tweens) to solubilise vesicles prepared from phosphatidylcholines of different acyl chain lengths and degrees of saturation with a view to rationalising (in terms of their membrane toxicity) which of the micelle-forming surfactants to use as drug delivery vehicles. The phosphatidylcholines used were dimyristoyl-, dipalmitoyl-, distearoyl- and dioleoylphosphatidylcholine (DMPC, DPPC, DSPC and DOPC, respectively) while the nonionic polyoxyethylene sorbitan monoesters studied were polyoxyethylene (20) sorbitan monolaurate (Tween 20), a 9:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 40), a 1:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 60), and polyoxyethylene (20) sorbitan monooleate (Tween 80). The ability of the Tween micelles to solubilise phospholipid vesicles was found to depend both upon the length of the surfactant acyl chain and the length of the acyl chains of the phospholipid comprising the vesicle. Vesicles composed of long saturated diacyl chain phospholipids, namely DSPC and DPPC, were the most resistant to solubilisation, while those prepared from the shorter acyl chained DMPC were more readily solubilised. In terms of their solubilisation behaviour, vesicles made from phospholipids containing long, unsaturated acyl chains, namely DOPC behaved more akin to those vesicles prepared from DMPC. None of the Tween surfactants were effective at solubilising vesicles prepared from DPPC or DSPC. In contrast, there were clear differences in the ability of the various surfactants to solubilise vesicles prepared from DMPC and DOPC, in that micelles formed from Tween 20 were the most effective solubilising agent while those formed by Tween 60 were the least effective. As a consequence of these observations it was considered that Tween 60 was the surfactant least likely to cause membrane damage in vivo and, therefore, is the most suitable surfactant for use as a micellar drug delivery vehicle.  相似文献   

3.
We demonstrate the ability to stably sequester individual single-walled carbon nanotubes (SWNTs) within self-contained nanometer-scale aqueous volumes arrayed in an organic continuum. Large areal densities of 4 × 10(9) cm(-2) are readily achieved. SWNTs are incorporated into a surfactant mesophase which forms 2.3 nm diameter water channels by lyotropic self-assembly. Near-infrared fluorescence spectroscopy demonstrates that the SWNTs exist as well-dispersed tubes that are stable over several months and through multiple cycles of heating and cooling. Absence of physical distortion of the mesophase suggests that the SWNTs are stabilized by adsorbed surfactants that do not extend considerably from the surface. Our findings have important implications for templated assembly of carbon nanotubes using soft mesophases and the development of functional nanocomposites.  相似文献   

4.
We review the recent advances in dispersing single-wall carbon nanotubes (SWNTs) using amphiphilic surfactants in aqueous solutions. Three aspects are discussed. (1) On the organization of surfactant molecules with SWNTs, new insights at the microscopic level arise from electron microscopy and detailed computer simulation studies. (2) Quantitative measurements, such as molecular interactions between functional groups and SWNTs, the coverage of surfactant on SWNTs in solution, the charge state of the SWNT/surfactant complex, and the degree of dispersion are critical for better understanding dispersion mechanisms and for the further development of dispersion strategies. (3) The thermodynamic driving forces and the role of metastability in the structure of surfactant dispersed SWNT suspensions are analyzed. An outlook on practical and fundamental issues is also presented.  相似文献   

5.
We examine the Breit-Wigner-Fano (BWF) line shape in the Raman spectra of carbon single-wall nanotubes (SWNTs) dispersed in aqueous suspensions. Bundling and electronic effects are studied by comparing undoped SWNTs (C-SWNTs) to boron-doped nanotubes (B-SWNTs) in a variety of different surfactant solutions. For SWNTs dispersed with nonionic surfactants that are less effective in debundling than ionic surfactants, the Raman spectra retain a large BWF feature. However, we demonstrate that even for SWNTs dispersed as isolated nanotubes by ionic surfactants the BWF feature may be present and that the intensity of the BWF is highly sensitive to the specific surfactant. In particular, surfactants with electron-donating groups tend to enhance the BWF feature. Also, modification of the SWNT electronic properties by boron doping leads to enhanced surfactant dispersion relative to undoped C-SWNTs and also to modification of the BWF feature. These observations are in agreement with reports demonstrating an enhancement of the BWF by bundling but also agree with reports that suggest electron donation can enhance the BWF feature even for isolated SWNTs. Importantly, these results serve to caution against using the lack or presence of a BWF feature as an independent measure of SWNT aggregation in surfactant dispersions.  相似文献   

6.
The interactions of two partially charged ampholytic terpolymers [consisting of acrylamide, sodium 2-acrylamido-2-methylpropanesulphonate, and 2-(methacryloyloxyethyl)trimethylammonium chloride segments with molar compositions 80/12/08 and 80/08/12] and two fully charged ampholytic copolymers (containing only the two latter comonomers with molar compositions of 80/20 and 50/50), with cationic surfactants [tetradecyl- trimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB)] and the anionic surfactant sodium dodecylsulphate (SDS), are investigated. The studies include phase behaviour (swelling, solubilisation, precipitation), viscometry, electrical conductivity, and potentiometry (bromide ion and surfactant ion-specific electrodes). The 80/08/12 and 80/12/08 polyampholytes swell in water and are solubilised in the presence of cationic or anionic surfactants above a particular surfactant concentration that is proportional to the polymer concentration. The polyampolyte 80/20 is soluble in water but precipitates in the presence of TTAB, whereas 50/50 is insoluble in water and in the presence of TTAB, but is solubilised upon addition of SDS. The results indicate that TTAB binds to 80/12/08 with little or no cooperativity. Solubilisation appears to be the result of the increasing polyelectrolyte character of the polyampholyte upon neutralisation of its charged sites by bound surfactant ions of opposite charge. The binding of TTAB by the 50/50 polyampholyte is very weak and non-cooperative. In contrast, 80/20 binds TTAB cooperatively, much like a true polyelectrolyte-surfactant system of opposing charges. In particular, the binding is characterised by the existence of a critical aggregation concentration. A partial phase diagram for this system has been determined from the TTA+-electrode potential data. The behaviour of true polyelectrolytes and polyampholytes, with respect to their interaction with surfactants, is discussed. Received: 22 July 1998 Accepted: 14 September 1998  相似文献   

7.
We have studied the melting of polymeric amphiphilic micelles induced by small-molecule surfactant and explained the results by experimental determination of the interfacial tension between the core of the micelles and the surfactant solutions. Poly(n-butyl acrylate-b-acrylic acid) (PBA-b-PAA) amphiphilic diblock copolymers form kinetically frozen micelles in aqueous solutions. Strong interactions with surfactants, either neutral or anionic [C12E6, C6E4, sodium dodecyl sulfate (SDS)], were revealed by critical micelle concentration (cmc) shifts in specific electrode and surface tension measurements. Since both polymer and surfactant are either neutral or bear negative charges, the attractive interactions are not due to electrostatic interactions. Light scattering, neutron scattering, and capillary electrophoresis experiments showed important structural changes in mixed PBA-b-PAA/surfactant systems. Kinetically frozen micelles of PBA-b-PAA, that are hardly perturbed by concentration, ionization, ionic strength, and temperature stresses, can be disintegrated by addition of small-molecule surfactants. The interfacial energy of the PBA in surfactant solutions was measured by drop shape analysis with h-PBA homopolymer drops immersed in small-molecule surfactant solutions. The PBA/water interfacial energy gammaPBA/H2O of 20 mN/m induces a high energy cost for the extraction of unimers from micelles so that PBA-b-PAA micelles are kinetically frozen. Small-molecule surfactants can reduce the interfacial energy gammaPBA/solution to 5 mN/m. This induces a shift of the micelle-unimer equilibrium toward unimers and leads, in some cases, to the apparent disintegration of PBA-b-PAA micelles. Before total disintegration, polymer/surfactant mixtures are dispersions of polydisperse mixed micelles. Based on core interfacial energy arguments, the disintegration of kinetically frozen polymeric micelles was interpreted by gradual fractionation of objects (polydisperse dispersion mechanism), whereas the disintegration of polymeric micelles in a thermodynamically stable state was interpreted by an exchange between a population of large polymer-rich micelles and a population of small surfactant-rich micelles (bidisperse dispersion mechanism). Finally, in our system and other systems from the literature, interfacial energy arguments could explain why the disintegration of polymer micelles is either partial or total as a function of the surfactant type and concentration and the hydrophobic block molar mass of the polymer.  相似文献   

8.
The interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.   相似文献   

9.
《印度化学会志》2022,99(11):100751
The present work has used pre-irradiation of surfactants in order to enhance their capacity to solubilize hydrophobic drugs and dyes. Aqueous solution of two pluronic surfactants viz., F-127 and P-123 were subjected to gamma radiation. These irradiated surfactant solutions were used to solubilize five drugs such as ornidazole, tinidazole, ciprofloxacin, aceclofenac, and methylparaben, and two dyes, methyl orange and eosin yellow. Their capacity for enhancing solubilisation was compared with that of unirradiated surfactants. The irradiated surfactant solutions displayed 0.88%–31.9% higher solubilisation compared to unirradiated surfactant solutions. This phenomenon of enhancement in solubility is explained through changes in the physical properties like decreased surface tension and increased hydrodynamic radius in irradiated block polymeric surfactants. Irradiation of surfactants for enhancing their capacity to solubilize hydrophobic chemical entities has been used for the first time.  相似文献   

10.
Gemini surfactants typically consist of two single-chain surfactants chemically linked by a spacer molecule. We report herein the results of fully atomistic molecular dynamics (MD) simulations of a series of Gemini surfactants: CsH2s-alpha,omega-bis(C12H25N+(CH3)2Cl-), at the air/water interface with s = 3, 4, 6, 12, 14, and 16, at values of the initial surface area per surfactant AS = 70 A2, 77 A2, 95 A2, 151 A2, 133 A2, and 103 A2, respectively. The AS values employed were obtained from surface tension and neutron reflection experiments at the respective cmc of each surfactant. The Gemini surfactant corresponding to s = 3 was also simulated at AS = 105 A2, which is the experimentally derived value of surface area per surfactant at 1/10th of cmc. Only the surfactants with s = 12 and 14 and the surfactant with s = 3 at AS = 105 A2 gave a stable monolayer at the air/water interface. In other cases, we observe movement of some surfactant molecules from the air/water interface into the aqueous phase, resulting in a stable primary monolayer of surfactants at the air/water interface and a small concentration of surfactant molecules below it. The latter form aggregates, with their hydrophobic chains in the core. The density profiles along the normal to the interface are compared with the ones obtained from neutron reflection experiments. The MD simulations confirm the bending of the spacer toward the hydrophobic chains as the spacer length is increased and the spacer becomes more hydrophobic. The simulations have helped to shed light on the low-resolution picture which emerges from experimental analyses.  相似文献   

11.
This review explores three (A, B, C) polyoxyalkylated diethylenetriamine (DETA) polymeric surfactants belonging to the group of star-like polymers. They have a similar structure, differing only in the number of polymeric branches (4, 6 and 9 in the mentioned order). The differences in these surfactants' ability to stabilize foam, o/w/o and w/o/w emulsion and wetting films are evaluated by a number of methods summarized in Section 2. Results from the studies indicate that differences in polymeric surfactants' molecular structure affect the properties exhibited at air/water, oil/water and water/solid interfaces, such as the value of surface tension, interfacial tension, critical micelle concentration, degree of hydrophobicity of solid surface, etc. Foam, emulsion and wetting films stabilized by such surfactants also show different behavior regarding some specific parameters, such as critical electrolyte concentration, surfactant concentration for obtaining a stable film, film thickness value, etc. These observations give reasons to believe that model studies can support a comprehensive understanding of how the change in polymeric surfactant structure can impact thin liquid films properties. This may enable a targeted design of the macromolecular architecture depending on the polymeric surfactants application purpose.  相似文献   

12.
The implicit solvent model (ISM) proposed previously for the simulation of surfactant aqueous solutions, in which no water molecules of the solvent are treated explicitly, but the effects are incorporated using the solvent-averaged interactions between the surfactant segments in water at infinite dilution, has been revised to represent the surfactant aggregates more appropriately. In the revised model (ISM-2), the interactions between the hydrophobic sites of the surfactants are varied depending on their surroundings, namely, the local hydrocarbon density. The ISM-2 has been applied to the molecular dynamics simulations of (i) the single n-hexane droplets of different sizes in water and (ii) the single micelle composed of 30 n-decyltrimethylammonium chloride (C10TAC) cationic surfactants. As a result, it was found that the ISM-2 can mimic the n-hexane/water interface and represent the fluidity of the hydrocarbon interior of the surfactant micelle that the original ISM fails to do. The results will be compared to those from experiments and atomistic model simulations.  相似文献   

13.
Increasing triolein content of oil-in-water microemulsions in the pure C(12)E(4)/water/n-hexadecane/triolein system while maintaining a fixed surfactant concentration and volume fraction of drops raises the temperature of the solubilisation boundary, where excess oil separates, but has only a slight effect on the (higher) cloud point temperature, where excess water appears. Thus, the temperature range of the single-phase microemulsion shrinks and ultimately disappears. When such microemulsions are in equilibrium with excess oil, the hexadecane/triolein ratio is greater in the microemulsion, probably because the larger triolein molecules are unable to penetrate the hydrocarbon chain region of the surfactant films of the microemulsion droplets. Indeed, monolayer studies and calculations based on microemulsion and excess oil compositions indicate that the films have minimal triolein and similar ratios of hexadecane to surfactant. Triolein drops brought into contact with hexadecane-in-water microemulsions first swell as they incorporate hexadecane, then shrink owing to solubilisation. Interfacial tension decreases during this process until it becomes almost constant near 0.01 mN m(-1), suggesting that the drops in the final stages of solubilisation have high hexadecane contents. A microemulsion containing 10 wt% C(12)E(4) and 15 wt% hexadecane was able to remove over 50% of triolein from polyester fabric at 25 degrees C, more than twice that removed by an oil-free solution with the same surfactant concentration in similar experiments.  相似文献   

14.
In the present study, we have performed molecular dynamics simulations to describe the microscopic behaviors of the anionic, nonionic, zwitterion, and gemini surfactants at oil/water interface. The abilities of reducing the interfacial tension and forming the stable interfacial film of the four surfactants have been investigated through evaluating interfacial thickness, interface formation energy and radial distribution function. The results show that the four kinds of surfactants can form in stable oil/water interface of monolayer, and the gemini surfactant can form the more stable monolayer. The results of the above three parameters demonstrate that the gemini surfactant has the best simulation effect in the four surfactants. From the calculated interfacial tension values, the gemini surfactant possess the more powerful ability of reducing the interfacial tension than others, so it is more suitable to be used as the surfactant for flooding. In addition, the effects of different electric field intensities on surfactants were calculated, through the radial distribution function of the hydrophilic group in the surfactant and the oxygen atom in the water. We have found that the adding of the periodic electric field can significantly affect the diffusion behavior of the molecules, and nonionic surfactant has stronger demulsification capability than others.  相似文献   

15.
The 1-hexadecyl-3-vinylimidazolium bromide (hvimBr), a water-soluble long-chain imidazolium ionic liquid (IL) with surfactant properties, showed the ability to produce stable homogeneous aqueous dispersions of pristine Single-Walled Carbon Nanotubes (SWNTs). The purpose of this study is the improvement of SWNT dispersing ability by assessing the effect of different groups in position 3 of the imidazole ring. In this regard structural analogues were synthesized and, after characterization, their capability to dissolve SWNTs in water was investigated. Molecular Dynamics (MD) simulations have been performed to provide a semi-quantitative indication of the affinity of each dispersing agent toward SWNT and to attempt an explanation of the experimental results.  相似文献   

16.
The dynamics of adsorption, interfacial tension, and rheological properties of two phosphocholine-derived partially fluorinated surfactants FnHmPC, designed to compensate for the weak CO(2)-surfactant tail interactions, were determined at the pressurized CO(2)-H(2)O interface. The two surfactants differ only by the length of the hydrocarbon spacer (5 CH(2) in F8H5PC and 11 CH(2) in F8H11PC) located between the terminal perfluoroalkyl chain and the polar head. The length of this spacer was found to have a critical impact on the adsorption kinetics and elasticity of the interfacial surfactant film. F8H5PC is soluble in both water and CO(2) phases and presents several distinct successive interfacial behaviors when bulk water concentration (C(W)) increases and displays a nonclassical isotherm shape. The isotherms of F8H5PC are similar for the three CO(2) pressures investigated and comprise four regimes. In the first regime, at low C(W), the interfacial tension is controlled by the organization that occurs between H(2)O and CO(2). The second regime corresponds to the adsorption of the surfactant as a monolayer until the CO(2) phase is saturated with F8H5PC, resulting in a first inflection point. In this regime, F8H5PC molecules reach maximal compaction and display the highest apparent interfacial elasticity. In the third regime, a second inflection is observed that corresponds to the critical micelle concentration of the surfactant in water. At the highest concentrations (fourth regime), the interfacial films are purely viscous and highly flexible, suggesting the capacity for this surfactant to produce water-in-CO(2) microemulsion. In this regime, surfactant adsorption is very fast and equilibrium is reached in less than 100 s. The behavior of F8H11PC is drastically different: it forms micelles only in the water phase, resulting in a classical Gibbs interface. This surfactant decreases the interfacial tension down to 1 mN/m and forms a strongly elastic interface. As this surfactant forms a very cohesive interface, it should be suitable for formulating stable water-in-CO(2) emulsions. The finding that the length of the hydrocarbon spacer in partially fluorinated surfactants can drastically influence film properties at the CO(2)-H(2)O interface should help control the formation of microemulsions versus emulsions and help elaborate a rationale for the design of surfactants specifically adapted to pressurized CO(2).  相似文献   

17.
The interactions of proteins with fluorinated/hydrogenated surfactants were investigated by circular dichroism and turbidity measurement. Pairs of fluorinated and hydrogenated surfactants with similar critical micelle concentrations (cmc), including sodium perfluorooctanoate/sodium decylsulfate and lithium perfluorononanoate/sodium dodecylsulfate were compared in view of their interactions with proteins including BSA, lysozyme, β-lactoglobulin and ubiquitin. It was found that fluorinated surfactants exhibited stronger interactions with proteins than hydrogenated ones, which, however, depended on the structures of both proteins and surfactant molecules. If the proteins are very stable, or the surfactant–protein interactions are very strong, such differences between the two kinds of surfactants might be indistinguishable.  相似文献   

18.
张腾云  钟理 《化学通报》2005,68(8):585-590
介绍了超临界CO2中表面活性剂的结构特征以及聚合物表面活性剂和小分子表面活性剂的研究进展。指出了开发亲CO2表面活性剂的一些基本原则,其中降低表面活性剂在H2O/CO2表面的界面张力和提高表面活性剂的吸附能力比溶解度更为重要。建议加强CO2表面活性剂的研究与开发。  相似文献   

19.
As-synthesized single-walled carbon nanotubes (SWNTs) are bundled mixtures of different species. The current challenge in the field of carbon nanotube research lies in the processing and separation of SWNTs, which first require efficient dispersion of individual SWNTs in solvents. We report DNA-mimicking polysoap surfactants that disperse SWNTs in aqueous solutions more effectively than DNA. The polysoaps are synthesized by functionalizing the side chain of poly(styrene-alt-maleic acid) with aminopyrene. The synthetic nature of the polysoap opens a new approach to further optimization of not only SWNT dispersion efficiency but also multi-functional SWNT dispersing surfactant.  相似文献   

20.
The consequences of including amide bonds into the structure of short-chain nonionic surfactants have been studied. Of particular interest were the possible effects of the hydrogen bonding ability of the amide group on the micellar shape. The aggregate structure and hydration of two different amide-containing surfactants, C7H15CO-NH-(CH2CH2O)4H and C7H15CO-(NH-C3H6-CO)2N(CH3)2, were investigated using NMR diffusometry (pulsed gradient spin echo NMR) as the main technique. Data from experiments on the surfactants, the hydrophobic probe molecule hexamethyldisilane (HMDS), and water were interpreted to gain information about the solution structures, and the results were compared to those on a previously studied alcohol ethoxylate surfactant of similar size, C8E4. Both of the amide-containing surfactants form small micelles within the whole investigated concentration range. At the critical micelle concentration, the aggregates are most probably spherical, and with increasing surfactant concentration there are indications of either a minor aggregate growth or agglomeration of the micelles. In addition, it was found that the presence of amide groups in the surfactant inhibits the intermicellar transport of HMDS, which occurs in the C8E4 system. From measurements on water diffusion in the three surfactant systems, it could be concluded that the surfactant hydration is higher when amide bonds are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号