首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) for the binary systems: {ionic liquid (IL) N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BM4Py][TOS], or N-butyl-3-methylpyridinium tosylate [BM3Py][TOS], or N-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], or N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide [BM4Py][NTf2], or 1,4-dimethylpyridinium tosylate [M1,4Py][TOS], or 2,4,6-collidine tosylate [M2,4,6Py][TOS], or 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN], or 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-hexyl-3-methylimidazolium thiocyanate [HMIM][SCN], or triethylsulphonium bis(trifluoromethylsulfonyl)imide [Et3S][NTf2] + thiophene} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 390) K. In the case of systems (pyridinium IL, or sulphonium IL + thiophene) the mutual immiscibility with an upper critical solution temperature (UCST) was detected at the very narrow and low mole fraction of the IL. For the binary systems containing (imidazolium thiocyanate IL + thiophene), the mutual immiscibility with the lower critical solution temperature (LCST) was detected at the higher mole fraction range of the IL. The basic thermal properties of the pure ILs, i.e. melting and glass-transition temperatures as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). The well-known NRTL equation has been used to correlate experimental SLE/LLE data sets.  相似文献   

2.
Quinolinium ionic liquid has been prepared from 1-butylquinolinium bromide as a substrate. The work includes specific basic characterization of synthesized compound by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). (Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) N-butylquinolinium bis{(trifluoromethyl)sulfonyl}imide, {([BQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or methylbenzene, or propylbenzene, or thiophene), or an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-dodecanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (260 to 330) K. For the binary systems, the simple eutectic diagrams were observed with immiscibility in the liquid phase with an upper critical solution temperature (UCST). For mixtures with alcohols, it was observed that with increasing chain length of an alcohol the solubility decreases and the UCST increases. In the case of mixture (IL + benzene, or alkylbenzene, or thiophene) the eutectic systems with mutual immiscibility in the liquid phase with very high UCSTs were observed. These points were not detectable with our method and they were observed at low ionic liquid mole fraction. Densities at high temperatures were determined and extrapolated to T = 298.15 K. Well-known UNIQUAC, and NRTL equations have been used to correlate experimental SLE data sets. For the systems containing immiscibility gaps {IL + an alcohol} parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

3.
(Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) 1-butyl-3-methylimidazolim tosylate (p-toluenesulfonate) {[BMIM][TOS] + water, an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or n-hexane, or an aromatic hydrocarbons (benzene, or toluene, or ethylbenzene, or propylbenzene, or thiophene)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (230 to 340) K. For the binary systems containing water, or an alcohol, simple eutectic diagrams were observed with complete miscibility in the liquid phase. As usual, with increasing chain length of the alcohol the solubility decreases. In the case of mixtures {IL + n-hexane, or benzene, or alkylbenzene, or thiophene} the eutectic systems with mutual immiscibility in the liquid phase with an upper critical solution temperature (UCST) were detected. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). Density at high temperatures was determined and extrapolated to 298.15 K. Well-known UNIQUAC, Wilson and NRTL equations have been used to correlate experimental SLE data sets for alcohols and water. For the systems containing immiscibility gaps {IL + n-hexane, or benzene, or alkylbenzene, or thiophene}, parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

4.
The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{(trifluoromethyl)sulfonyl}imide [HQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {[HQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed, that with increasing chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibria data sets. For the systems containing immiscibility gaps, (IL + an alcohol) parameters of the LLE correlation were used to the prediction of SLE.  相似文献   

5.
(Liquid + liquid) equilibria of 14 binary systems composed of n-hexane, n-heptane, benzene, toluene, o-xylene, m-xylene, or p-xylene and 1-ethyl-3-methylimidazolium ethylsulfate, [emim]EtSO4, or 1-butyl-3-methylimidazolium methylsulfate, [bmim]MeSO4, ionic liquids have been done in the temperature range from (293.2 to 333.2) K. The solubility of aliphatic is less than those of the aromatic hydrocarbons. In particular, the solubility of hydrocarbons in both ionic liquids increases with the temperature in the order n-heptane < n-hexane < m-xylene < p-xylene < o-xylene < toluene < benzene. Considering the high solubility of aromatics and the low solubility of aliphatic hydrocarbons as well as totally immiscibility of the ionic liquids in all hydrocarbons, these new green solvents may be used as potentials extracting solvents for the separation of aromatic and aliphatic hydrocarbons.  相似文献   

6.
(Solid + liquid) equilibria (SLE) prediction are an important phase equilibria property for ionic liquid (IL) mixtures especially when the IL exists as a solid. In this work, the SLE for the binary systems of (IL + thiophene) consisting of the ILs: n-butyl-4-methylpyridinium tosylate [BM4Py][TOS], n-butyl-3-methylpyridinium tosylate [BM3Py][TOS], n-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], and 1,4-dimethylpyridinium tosylate [M1,4Py][TOS] are predicted using the quantum chemical based COSMO-RS (COnductor like Screening MOdel for Real Solvents) model. Initially, benchmarking studies are performed on binary mixtures which are known beforehand. The values of the predicted solubility are then compared with the experimental results by calculating the root mean square error (RMSE). The SLE predictions of the solubility of pyrene and dibenzothiophene in five different solvents were carried out giving an average RMSE of 4%. Further the applicability of COSMO-RS to binary systems consisting of (ionic liquid + alcohol) mixtures and (ionic liquid + hydrocarbons) are predicted. The ionic liquids concerned are n-butyl-3-methylpyridinium tosylate [BM3Py][TOS] while the alcohols and hydrocarbons are 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and benzene, toluene, ethylbenzene, n-propylbenzene respectively. The experimental data for the ionic liquid [BM4Py][TOS] with thiophene gave the smallest deviation of 10.2%. The overall RMSE for IL–thiophene, IL–alcohol, and IL–hydrocarbons were 15%, 17.2% and 12.9% respectively. Thus the predicted solubility values were found to be in reasonable agreement with the experimental values.  相似文献   

7.
This work is a continuation of our wide ranging investigation on quinolinium based ionic liquids (ILs). The study includes specific basic characterisation of the synthesized compounds N-octylquinolinium bromide, [OQuin][Br] and N-octylquinolinium bis{(trifluoromethyl)sulfonyl}imide [OQuin][NTf2] by NMR spectra, elementary analysis and water content. Differential scanning calorimetry (DSC) measurements gave us properties of the pure [OQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity at the glass transition. Densities and viscosities were determined as a function of temperature. The temperature-composition phase diagrams of 10 binary mixtures composed of organic solvent dissolved in the IL: {[OQuin][NTf2] + aromatic hydrocarbon (benzene, or thiophene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol, or 1-dodecanol)} were measured at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (250 to 370) K. For mixtures with benzene and alkylbenzenes, the immiscibility gap in the liquid phase in a low mole fraction of the IL was observed with upper critical solution temperature (UCST) higher than the boiling point of the solvent. In the system with thiophene, the immiscibility gap is lower and UCST was measured. For binary mixtures with alcohols, complete miscibility in the liquid phase was observed for 1-butanol and 1-hexanol. In the systems with longer chain alcohols, the immiscibility gap with UCST was noted. Typical behaviour for ILs was observed with an increase of the chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibrium data sets.  相似文献   

8.
The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM3Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.  相似文献   

9.
During the last years, a large number of studies have evaluated the ability of ionic liquids (ILs) to separate aromatic from aliphatic hydrocarbons by liquid extraction. Nevertheless, in order to design a global process, a post-extraction step based on the aromatic recovery from the extract stream and the regeneration of the IL is required. Taking into account the negligible vapor pressure of the ILs, the use of separation units based on the difference of volatility among the components of the extract could be an appropriate way. However, that requires additional (vapor + liquid) equilibrium (VLE) data, which are scarce today. In this work, the isothermal VLE data for {n-heptane + toluene + 1-ethyl-3-methylimidazolium thiocyanate ([EMim][SCN])} and {n-heptane + toluene + 1-butyl-3-methylimidazolium thiocyanate ([BMim][SCN])} mixtures were experimentally measured at T = (323.2, 343.2 and 363.2) K over the whole composition range within the rich-IL miscibility region. For that, a static headspace gas chromatograph (HS-GC) was used. In addition, the non-random two liquids (NRTL) thermodynamic model was satisfactory applied to correlate the experimental VLE data.Finally, the effect of thiocyanate-based inorganic salts (AgSCN, Co(SCN)2 and CuSCN) on the phase behavior of the above mentioned mixtures were also analyzed through the experimental determination of the isothermal VLE of the pseudo-ternary systems {n-heptane + toluene + [EMim][SCN]/salt mixture}.The obtained results show that the use of pure thiocyanate-based ILs as entrainer increases the n-heptane relative volatility from toluene whereas the addition of inorganic salts has not led to an improvement of these results.  相似文献   

10.
A new isoquinolinium ionic liquid (IL) has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterization of synthesized compounds: N-isobutylquinolinium bromide, [BiQuin][Br] and N-isobutylquinolinium bis{(trifluoromethyl)sulfonyl}imide [BiQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [BiQuin][NTf2], i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity at glass transition have been measured using a differential scanning microcalorimetry technique (DSC). Densities and viscosities were determined as a function of temperature. The temperature-composition phase diagrams of 8 binary mixtures composed of organic solvent dissolved in the IL: {[BiQuin][NTf2] + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} were measured at ambient pressure. A dynamic method was used over a broad range of mole fraction and temperature from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with an immiscibility gap in the liquid phase existing at low mole fraction of the IL with a very high upper critical solution temperature (UCST). For mixtures with alcohols, complete miscibility was observed for 1-butanol and also an immiscibility gap with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed that with increasing chain length of an alcohol, the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibrium data sets.  相似文献   

11.
Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.  相似文献   

12.
The solubilities of ionic liquids in the ternary systems (ionic liquid + H2O + inorganic salt) were reported at 298.15 K and atmospheric pressure. The examined ionic liquids are [C4mim][PF6] (1-n-butyl-3-methylimidazolium hexafluorophosphate), [C8mim][PF6] (1-n-octyl-3-methylimidazolium hexafluorophosphate), and [C8mim][BF4] (1-n-octyl-3-methylimidazolium tetrafluoroborate). The examined inorganic salts are the chloride-based salts (sodium chloride, lithium chloride, potassium chloride, and magnesium chloride) and the sodium-based salts (sodium thiocyanate, sodium nitrate, sodium trifluoroacetate, sodium bromide, sodium iodide, sodium perchlorate, sodium acetate, sodium hydroxide, sodium dihydrogen phosphate, sodium phosphate, sodium tetrafluoroborate, sodium sulfate, and sodium carbonate). The effects of the cations and the anions of the ionic liquids and of the inorganic salts on the solubility of the ionic liquids in the ternary solutions were systematically compared and discussed.  相似文献   

13.
In the last years, new strict environmental regulations to reduce sulfur content in liquid fuels have been established. Thiophene derivates can be considered as the key substances to be separated from liquid fuel oils. This paper reports the ability of the ionic liquid 1-methyl-3-octylimidazolium tetrafluoroborate to act as solvent in the (liquid + liquid) extraction of thiophene from aliphatic hydrocarbons. Tie-line data have been determined for ternary systems containing the ionic liquid, thiophene, and some n-alkanes at T = 298.15 K. Extraction process has been analyzed by means of thiophene distribution ratio and selectivity. The solute distribution coefficient decreases and the selectivity increases as the chain length of n-alkane increases. The use of 1-methyl-3-octylimidazolium tetrafluoroborate as potential solvent for separation of thiophene from n-alkanes is feasible using the necessary quantity of solvent. A correlation of the equilibrium data reported here has also been made, using the NRTL activity coefficient model, in order to facilitate their use in simulation and design processes.  相似文献   

14.
In this work, the separation of benzene from aliphatic hydrocarbons (hexane, or heptane) is investigated by extraction with 1-ethyl-3-methylpyridinium ethylsulphate ionic liquid, [EMpy][ESO4]. (Liquid + liquid) equilibria (LLE) data are determined for the ternary systems: {hexane (1) + benzene (2) + [EMpy][ESO4] (3)} at T = (283.15, 293.15, 298.15, and 303.15) K and {heptane (1) + benzene (2) + [EMpy][ESO4] (3)} at T = (283.15 and 298.15) K and atmospheric pressure. The selectivity and distribution coefficient, derived from the tie line data, were used to determine whether the ionic liquid is a good solvent for the extraction of aromatic from aliphatic compounds. The consistency of the tie line data was ascertained by applying the Othmer–Tobias and Hand equations. The experimental results for the ternary systems were well correlated with the NRTL equation. A study of the temperature effect and the influence of the chain length of the alkanes were realized. The results obtained were compared with other ionic liquids. There are no literature data for the mixtures discussed in this paper.  相似文献   

15.
(Liquid + liquid) equilibrium data for ternary systems of several aromatic and aliphatic hydrocarbons with the ionic liquid 3-methyl-N-butylpyridinium dicyanamide were determined at T = 303.15 K and 328.15 K and atmospheric pressure. As aromatics benzene, cumene and p-xylene have been chosen, as paraffins n-hexane and n-nonane were used. The experimental data were regressed and could be adequately correlated with the NRTL model. A logical order in the extraction capacity of 3-methyl-N-butylpyridinium dicyanamide for the different aromatics is obtained: benzene > p-xylene > cumene.  相似文献   

16.
Suitability of a pyridinium ionic liquid as a solvent in desulfurization has been analyzed. (Liquid + liquid) equilibria for ternary systems composed by 1-hexyl-3,5-dimethyl pyridinium {bis[trifluoromethylsulfonyl]imide, thiophene, and three hydrocarbons representative of fuel (n-heptane, 2,2,4 trimethylpentane, and toluene) have been determined at T = 298.15 K and atmospheric pressure. High solubility of thiophene in the ionic liquid and also of toluene have been found, being this solvent practically immiscible with 2,2,4 trimethylpentane and heptane. Equilibrium data of these systems have been well correlated with UNIQUAC equations finding the highest deviations for the ternary system involving toluene. NRTL model drove to worse results being considered as not suitable model to correlate the experimental results.  相似文献   

17.
The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO3], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T = 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO3] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO3] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO3] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent.Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique–differential thermal analysis (TG–DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K.The (solid + liquid) phase equilibria, curves were correlated by means of different GEx models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Comparison of the solubilities of different ammonium salts in alcohols, in hexane, in benzene, and in water are discussed.  相似文献   

18.
(Solid/liquid + liquid) phase diagrams at ambient pressure have been determined for the hyperbranched polymer, Boltorn W3000 with alcohols (methanol, ethanol, 1-propanol, 1-hexanol, 1-decanol), or with ethers (tert-butyl methyl ether, tert-butyl ethyl ether), or with hydrocarbons (n-hexane, n-heptane, benzene, toluene) by a dynamic method from T = 240 K to the boiling temperature of the solvent. (Solid + liquid) phase equilibria with immiscibility in the liquid phase were detected for B-W3000 with the alcohols and aliphatic hydrocarbons. The upper critical solution temperatures, UCSTs, were measured for (B-W3000 + 1-hexanol and 1-decanol) systems. The experimental results of (solid + liquid) phase equilibria have been correlated using NRTL equation.  相似文献   

19.
Several physical properties were determined for the ionic liquids 3-methyl-N-butylpyridinium tetracyanoborate ([3-mebupy]B(CN)4) and 1-butyl-1-methylpyrrolidinium tetracyanoborate ([1-mebupyr]B(CN)4), viz. liquid density, viscosity, surface tension, thermal stability, and heat capacity over the temperature range from 283.2 K to 475.2 K and at 0.1 MPa. The density and the surface tension were well correlated with linear equations and the viscosity with a Vogel–Fulcher–Tamman equation. The IL [3-mebupy]B(CN)4 is stable up to a temperature of 480 K and the IL [1-mebupyr]B(CN)4 up to a temperature of 548 K.Ternary data for the systems {(benzene + n-hexane), or (toluene + n-heptane), or (p-xylene + n-octane + [3-mebupy]B(CN)4)} were determined at T = 303.2 K and 328.2 K and p = 0.1 MPa. All experimental data were well correlated with the NRTL model. The values of the experimental and calculated aromatic/aliphatic selectivity are in good agreement with each other. The LLE data of [1-mebupyr]B(CN)4 were only measured in a 10 vol% aromatic feed for the three systems.  相似文献   

20.
(Liquid + liquid) phase equilibria (LLE) of binary mixtures containing hyperbranched polymer Boltorn® H2004 and n-alkanes (n-hexane, n-heptane, n-octane, and n-decane) were studied over the temperature range from about (260 up to 360) K. The polymer is partially miscible with n-alkanes and the solubility decreases with an increase of the chain length of the solvent. Corresponding LLE phase diagrams including spinodal and binodal (liquid + liquid) coexistence curves were calculated in terms of the statistical mechanics – based on the lattice-cluster theory, based only on the upper critical solution temperature, and the polymer chain architecture. The results show semi-qualitative agreement of predicted and experimental equilibrium compositions and temperatures. Boltorn® H2004 reveals complete miscibility in the liquid phase with alcohols (C1–C8), aromatic hydrocarbons (benzene, toluene, and thiophene), and ethers (methyl tetra-butyl ether, ethyl tetra-butyl ether, and tetrahydrofurane).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号