首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffusion coefficients of the Fe2(SO4)3)/water system at T = 298.15 K and at concentrations between 0.050 mol · dm−3 and 0.200 mol · dm−3 have been measured, using a conductimetric cell and an automatic apparatus to follow diffusion. The cell uses an open-ended capillary method. A conductimetric technique is used to follow the diffusion process by measuring the resistance of a solution inside the capillaries at recorded times. These data are discussed on the basis of the Onsager–Fuoss model. The diffusion of Fe2(SO4)3 is clearly affected by the Fe (III) hydrolysis. These data permit us to have a better understanding of the structure of such systems and the thermodynamic behaviour of ferric sulphate in different media.  相似文献   

2.
The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol · kg?1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 · 10?8 to 143 · 10?8) mol · kg?1. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg · mol?1.The standard molar Gibbs free energies, ΔtrG°, enthalpies, ΔtrH°, and entropies, ΔtrS°, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated ΔtrG° values were positive [(20 to 1230) J · mol?1]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.  相似文献   

3.
The osmotic coefficients of aqueous calcium chloride solutions were experimentally determined atT =  313.15 K by the isopiestic method. Magnesium chloride served as the isopiestic standard for the calculation of osmotic coefficients. The molality range covered in this study correspond to about 0.1mol · kg  1to 3.0mol · kg  1. In addition, the osmotic coefficients of aqueous mixtures of calcium chloride and magnesium chloride were determined over the range of ionic strength levels of about 0.1mol · kg  1to 9mol · kg  1and at various mole fractions. The results obtained were correlated by the Pitzer equation.  相似文献   

4.
Binary mutual diffusion coefficients (interdiffusion coefficients) of nickel chloride in water at T = 298.15 K and T = 310.15 K, and at concentrations between (0.000 and 0.100) mol · dm?3, using a Taylor dispersion method have been measured. These data are discussed on the basis of the Onsager–Fuoss and Pikal models. The equivalent conductance at infinitesimal concentration of the nickel ion in these solutions at T = 310.15 K has been estimated using these results. Through the same technique, ternary mutual diffusion coefficients (D11, D22, D12, and D21) for aqueous solutions containing NiCl2 and lactose, at T = 298.15 K and T = 310.15 K, and at different carrier concentrations were also measured. These data permit us to have a better understanding of the structure of these systems and the thermodynamic behaviour of NiCl2 in different media.  相似文献   

5.
Ternary mutual diffusion coefficients measured by Taylor dispersion method (D11, D22, D12, and D21) are reported for aqueous solutions of KCl + theophylline (THP) at T = 298.15 K at carrier concentrations from (0.000 to 0.010) mol · dm?3, for each solute. These diffusion coefficients have been measured having in mind a better understanding of the structure of these systems and the thermodynamic behavior of potassium chloride and theophylline in solution. For example, from these data it will be possible to make conclusions about the influence of this electrolyte in diffusion of THP and to estimate some parameters, such as the diffusion coefficient of the aggregate between KCl and THP.  相似文献   

6.
In the present study a biomass derived from the leaves of Acacia nilotica was used as an adsorbent material for the removal of cadmium and lead from aqueous solution. The effect of various operating variables, viz., adsorbent dosage, contact time, pH and temperature on the removal of cadmium and lead has been studied. Maximum adsorption of cadmium and lead arises at a concentration of 2 g/50 ml and 3 g/50 ml and at a pH value of 5 and 4, respectively. The sorption data favored the pseudo-second-order kinetic model. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherm of the metal ions by A. nilotica biomass. Based on regression coefficient, the equilibrium data found were fitted well to the Langmuir equilibrium model than other models. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated, respectively revealed the spontaneous, endothermic and feasible nature of adsorption process. The activation energy of the biosorption (Ea) was estimated as 9.34 kJ mol−1 for Pb and 3.47 kJ mol−1 for Cd from Arrhenius plot at different temperatures.  相似文献   

7.
Cadmium has been extracted as a chloride complex through a flat-sheet-supported liquid membrane (SLM), using the tertiary amine Alamine 304-1 (mainly trilaurylamine or TLA) in kerosine.The typical permeability of the membrane was 1.1×10−6 m s−1. The rate limiting step is diffusion through the membrane. The cadmium loading of the extractant at the feed–membrane interface is high. Trilaurylammonium chloride crystallizes at the surface of the membrane above 0.2 M TLA. This salt blocks the pores and lowers the extraction rate up to a factor of 3. Apart from this blocking effect, the permeability through the membrane is described well with the presented model, using physically realistic parameter values. When the precipitation can be minimized, the system has good potentials for the extraction of cadmium chloride complexes.  相似文献   

8.
Densities of aqueous solutions of lithium chloride at the molalities (0.1009, 0.4932, and 1.0009)mol · kg  1were determined at 1 K temperature intervals fromT =  278.15 K to T =  338.15 K. The densities were used in the evaluation of the apparent molar volumes, cubic expansion coefficients, the apparent molar expansibilities and the second derivatives of the volume with respect to temperature. Properties of lithium chloride solutions which were determined in volumetric and calorimetric measurements are discussed and compared.  相似文献   

9.
Activity coefficients of CaCl2 in disaccharide {(maltose, lactose) + water} mixtures at 298.15 K were determined by cell potentials. The molalities of CaCl2 ranged from about 0.01 mol · kg?1 to 0.20 mol · kg?1, the mass fractions of maltose from 0.05 to 0.25, and those of lactose from 0.025 to 0.125. The cell potentials were analyzed by using the Debye–Hückel extended equation and the Pitzer equation. The activity coefficients obtained from the two theoretical models are in good agreement with each other. Gibbs free energy interaction parameters (gES) and salting constants (kS) were also obtained. These were discussed in terms of the stereo-chemistry of saccharide molecules and the structural interaction model.  相似文献   

10.
The Taylor dispersion technique has been used for measuring mutual diffusion coefficients of l-histidine methyl ester as its dihydrochloride at T = 298.15 K and finite concentrations from (0.001 to 0.100) mol · dm−3. On the basis of experimental mutual diffusion coefficients, the hydrodynamic radii, Rh, the diffusion coefficient at infinite dilution D0 and the dependence of thermodynamic factors, FT, on the concentration, have been estimated using the Onsager–Fuoss equation. Further insight on the diffusion has been obtained from 1H and 13C NMR spectroscopy and DFT calculations, which suggest that the l-histidine methyl ester is present as its dication in acidic solution in a fully extended conformation, with considerable charge delocalization over the imidazolium ring. These experimental and computational results allow us to have a better understanding of the thermodynamic and kinetic behavior of this amino acid derivative in aqueous solutions.  相似文献   

11.
Solubility of proline–leucine dipeptide, in water and in aqueous sodium chloride solutions, was measured at T = (288.15, 298.15, 308.15 and 313.15) K as a function of electrolyte concentration m = (0.1, 0.25, 0.5, 0.75 and 1) mol · kg−1 of water. Solubility data has been evaluated from density measurements using a vibrating tube densimeter. It has been observed that sodium chloride renders the dipeptide proline–leucine more soluble in water. Salting-in coefficients and standard free energies of transfer of proline–leucine, from water to aqueous sodium chloride solutions, have been calculated from the solubility data. Standard enthalpies and entropies of transfer have also been estimated and interpreted in terms of electrostatic and hydrophobic perturbed domains in the hydration shells of the dipeptide and of the cation and anion of the salt, as a function of temperature and salt concentration.  相似文献   

12.
The photonic and electrochemical properties of a novel Ru–phenolate based metallopolymer are reported. The complex undergoes a ruthenium based reversible oxidation at approximately +0.400 V and irreversible box ligand oxidation at +0.800 V vs. Ag/AgCl. Oxidation of thin films in aqueous electrolyte at +0.500 V reversibly switches the colour from wine red to light green and a red orange colour is observed for mixed redox composition. In contrast, oxidation at potentials more positive than +1.500 V shows no visible colour change but produces a change in the near infra-red region. To determine the electrochromic switching rate and to identify the rate determining step of the, scan rate dependent cyclic voltammetry was performed under semi-infinite linear diffusion conditions in aqueous lithium perchlorate. These data reveal that the homogeneous charge transport diffusion coefficient, DCT, is 3.6 ± 0.2 × 10−13 cm2 s−1, i.e., under these conditions it takes approximately 90 s to fully oxidise a 100 nm thick film.  相似文献   

13.
The molar enthalpies of reaction of metallic barium with 0.047 mol·dm−3 HClO4 as well as the molar enthalpies of dissolution of BaCl2 in 1.01 mol·dm−3 HCl and in water have been measured at T=298.15 K in a sealed swinging calorimeter with an isothermal jacket. From these results the standard molar enthalpy of formation of the barium ion in an aqueous solution at infinite dilution, as well as the enthalpies of formation of barium chloride and barium perchlorate, are calculated to be: ΔfH0m(Ba2+,aq)=−(535.83±1.25) kJ · mol−1; ΔfH0m(BaCl2,cr)=−(855.66±1.28) kJ · mol−1; and ΔfH0m(BaClO4,cr)=−(796.26±1.35) kJ · mol−1. The results obtained are discussed and compared with previous experimental values.  相似文献   

14.
Ternary mutual diffusion coefficients (D11, D22, D12 and D21) measured by the Taylor dispersion method are reported for aqueous solutions of {levodopa (l-dopa) + HCl} solutions at 25 °C and HCl concentrations up to 0.100 mol · dm−3. The coupled diffusion of l-dopa (1) and HCl (2) is significant, as indicated by large negative cross-diffusion coefficients. D21, for example, reaches values that are larger than D11, the main coefficient of l-dopa. Combined Fick and Nernst–Planck equations are used to analyze the proton coupled diffusion of l-dopa and HCl in terms of the binding of H+ ions to l-dopa and ion migration in the electric field generated by l-dopa and HCl concentration gradients.  相似文献   

15.
Ternary mutual diffusion coefficients (D11, D22, D12 and D21) measured by the Taylor dispersion method are reported for aqueous solutions of {levodopa (l-dopa) + β-cyclodextrin (β-CD)} solutions at T = 298.15 K and concentrations up to 0.007 mol · dm−3. Significant effects on the diffusion were observed, suggesting interactions between this carbohydrate and l-dopa. Support for this came from 1H NMR spectroscopy, which shows that these effects are due to formation of 1:1 (β-CD:l-dopa) complexes.  相似文献   

16.
This work reports individual activity coefficients of ions at T = 298.15 K in aqueous solutions obtained from voltage values of the respective half-cell ion-selective-electrode and a single-junction Ag–AgCl reference electrode, filled with different reference solutions at different concentrations. For potassium and chloride ions in KCl aqueous solutions, reference solutions of KCl, NaCl, or CsCl were used. For sodium and chloride ions in aqueous NaCl solutions, reference solutions of CsCl were used. Experimental runs were performed at molalities (1, 2, and 3) m of the reference solution. The concentration of the sample solution was increased, starting from around 1 · 10?3 m, up to the molality of the reference solution. The values of activity coefficients are calculated using the Henderson equation to estimate the liquid-junction potential. Results show that the ionic activity coefficients are independent of the nature and concentration of reference solution.  相似文献   

17.
We determined apparent molar volumes V? at 298.15 ? (T/K) ? 368.15 and apparent molar heat capacities Cp,? at 298.15 ? (T/K) ? 393.15 for aqueous solutions of HIO3 at molalities m from (0.015 to 1.0) mol · kg?1, and of aqueous KIO3 at molalities m from (0.01 to 0.2) mol · kg?1 at p = 0.35 MPa. We also determined V? at the same p and at 298.15 ? (T/K) ? 368.15 for aqueous solutions of KI at m from (0.015 to 7.5) mol · kg?1. We determined Cp,? at the same p and at 298.15 ? (T/K) ? 393.15 for aqueous solutions of KI at m from (0.015 to 5.5) mol · kg?1, and for aqueous solutions of NaIO3 at m from (0.02 to 0.15) mol · kg?1. Values of V? were determined from densities measured with a vibrating-tube densimeter, and values of Cp,? were determined with a twin fixed-cell, differential temperature-scanning calorimeter. Empirical functions of m and T were fitted to our results for each compound. Values of Ka, ΔrHm, and ΔrCp,m for the proton ionization reaction of aqueous HIO3 are calculated and discussed.  相似文献   

18.
The diffusion of ferrocene methanol in super-cooled aqueous solutions containing sucrose has been studied, using disk and cylindrical microelectrodes, over a wide viscosity range. The solution viscosity and the reduced temperature T/Tg (Tg being the glass transition temperature) were varied by changing the sucrose concentration and the temperature of the system. The voltammetric limiting current obtained with a disk microelectrode and the i(t) response on a cylindrical microelectrode after a potential step were used to determine diffusion coefficients from 7 × 10−6 cm2 s−1 down to 2 × 10−11 cm2 s−1. The electrochemical procedure described in this work allows a simple and accurate measurement of the dynamics of electroactive solutes in glass-forming liquids.  相似文献   

19.
Binary mutual diffusion coefficients measured by the Taylor dispersion method, for aqueous solutions of paracetamol (PA) at concentrations from (0.001 to 0.050) mol·dm−3 at T = 298.15 K, are reported. From the Nernst–Hartley equation and our experimental results, the limiting diffusion coefficient of this drug and its thermodynamic factors are estimated, thereby contributing in this way to a better understanding of the structure of such systems and of their thermodynamic behaviour in aqueous solution at different concentrations.  相似文献   

20.
Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (ΔsolH) were determined using Van’t Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (ΔtrG) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (ΔtrH) and entropies (ΔtrS) of transfer have also been calculated. The decrease in solubility is correlated to the positive ΔtrG value which is mainly of enthalpic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号