首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density, sound velocity, and viscosity of 1-ethyl-3-methylimidazolium bromide, [Emim][Br], in aqueous solutions of tri-potassium phosphate with salt weight fractions (ws = 0.00, 0.10, 0.15, and 0.20) have been measured as a function of concentration of [Emim][Br] at atmospheric pressure and T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. The apparent molar volume, isentropic compressibility, apparent isentropic compressibility, and relative viscosity values have been evaluated from the experimental data. The partial molar volume and isentropic compressibility at infinite dilution, and viscosity B-coefficient obtained from these data have been used to calculate the corresponding transfer parameters for the studied IL from water to the aqueous tri-potassium phosphate solutions. Also, an empirical equation was satisfactorily used to correlate the experimental viscosity data.  相似文献   

2.
Density data for dilute aqueous solutions of four cyclic ketones (cyclopentanone, cyclohexanone, cycloheptanone, and cyclohexane-1,4-dione) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were close to the saturated vapor pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Contributions of the molecular structural segments (methylene and carbonyl groups) to the standard molar volume were also evaluated and analyzed.  相似文献   

3.
Density data for dilute aqueous solutions of 1,2-ethanediol (ethylene glycol), 1,2-propanediol, 1,3-propanediol, and 1,2,3-propanetriol (glycerol) are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at temperatures from T = 298.15 K up to T = 573.15 K and at pressure close to the saturated vapour pressure of water, at pressures close to p = 20 MPa and p = 30 MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter.  相似文献   

4.
The purpose of this study is to present a model for the prediction of water activity in multicomponent aqueous solutions containing a common ion from available binary data. The hygrometric method has been used to measure relative humidities for the aqueous electrolyte mixture (NaCl  +  KCl)(aq) at total molalities ranging from 0.2 mol · kg  1to saturation for different molal ratiosr of NaCl(aq) to KCl(aq) with r =  (0.2, 0.5, 1, 2, 3, and 4) at T =  298.15 K. The data obtained have been used to determine water activities and osmotic coefficients. The results show that the values of water activities and osmotic coefficients calculated with the proposed model are close to the experimental ones. This model is also compared with four other models (RS, Pitzer, RWR, and LS II) over the range of the studied total molalities. From the measurements, the activity coefficients of NaCl(aq) and KCl(aq) in the mixture have also been determined.  相似文献   

5.
Density data for dilute aqueous solutions of 1-butanol, 2-butanol, 2-methyl-1-propanol (iso-butanol), and 2-methyl-2-propanol (tert-butanol) are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at temperatures from T = 298.15 K up to T = 573.15 K and at pressure close to the saturated vapour pressure of water, at pressures close to p = 20 MPa and p = 30 MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter.  相似文献   

6.
The application of semi-clathrate hydrate formation technology for gas separation purposes has gained much attention in recent years. Consequently, there is a demand for experimental data for relevant semi-clathrate hydrate phase equilibria. In this work, semi-clathrate hydrate dissociation conditions for the system comprising mixtures of {CO2 (0.151/0.399 mole fraction) + N2 (0.849/0.601 mole fraction) + 0.05, 0.15, and 0.30 mass fraction tetra-n-butylammonium bromide (TBAB)} aqueous solutions have been measured and are reported. An experimental apparatus which was designed and built in-house was used for the measurements using the isochoric pressure-search method. The range of conditions for the measurements was from 277.1 K to 293.2 K for temperature and pressures up to 16.21 MPa. The phase equilibrium data measured demonstrate the high hydrate promotion effects of TBAB aqueous solutions.  相似文献   

7.
Water activity measurements by the isopiestic method have been carried out on the aqueous ternary system of {l-serine + 1-(2-carboxyethyl)-3-methylimidazolium chloride[HOOCEMIM][Cl]} ionic liquid and the aqueous binary system of IL at T = 298.15 K and atmospheric pressure. The data obtained were used to calculate the vapor pressure and osmotic coefficient of solution as a function of concentration. The experimental results for the activity of water were accurately correlated with segment-based local composition models of modified NRTL and UNIQUAC. The fitting quality of the above models has been favorably compared with the NRTL and Wilson models. From these data, the corresponding activity coefficients have been calculated. For the same system, the solubility of the l-serine at various [HOOCEMIM][Cl] ionic liquid concentrations was measured at T = 298.15 K using the gravimetric method. A chemical model was employed to describe the dissociation equilibria of all amino acid species with hydrogen ions in water. Moreover, for l-serine, the chemical model indicated that the formation of cations is insignificant in the [HOOCEMIM][Cl] solution. Also the above local composition models were used to predict the solubility of l-serine in aqueous IL solutions. To provide information regarding (solute + solute) interactions, transfer Gibbs free energies (ΔGtr) of amino acid from water to aqueous IL solutions have been determined.  相似文献   

8.
The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H2O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good.  相似文献   

9.
Solubility of proline–leucine dipeptide, in water and in aqueous sodium chloride solutions, was measured at T = (288.15, 298.15, 308.15 and 313.15) K as a function of electrolyte concentration m = (0.1, 0.25, 0.5, 0.75 and 1) mol · kg−1 of water. Solubility data has been evaluated from density measurements using a vibrating tube densimeter. It has been observed that sodium chloride renders the dipeptide proline–leucine more soluble in water. Salting-in coefficients and standard free energies of transfer of proline–leucine, from water to aqueous sodium chloride solutions, have been calculated from the solubility data. Standard enthalpies and entropies of transfer have also been estimated and interpreted in terms of electrostatic and hydrophobic perturbed domains in the hydration shells of the dipeptide and of the cation and anion of the salt, as a function of temperature and salt concentration.  相似文献   

10.
Binary mutual diffusion coefficients (interdiffusion coefficients) of nickel chloride in water at T = 298.15 K and T = 310.15 K, and at concentrations between (0.000 and 0.100) mol · dm?3, using a Taylor dispersion method have been measured. These data are discussed on the basis of the Onsager–Fuoss and Pikal models. The equivalent conductance at infinitesimal concentration of the nickel ion in these solutions at T = 310.15 K has been estimated using these results. Through the same technique, ternary mutual diffusion coefficients (D11, D22, D12, and D21) for aqueous solutions containing NiCl2 and lactose, at T = 298.15 K and T = 310.15 K, and at different carrier concentrations were also measured. These data permit us to have a better understanding of the structure of these systems and the thermodynamic behaviour of NiCl2 in different media.  相似文献   

11.
《Fluid Phase Equilibria》2005,227(1):57-70
Viscosities of nine (1.5, 3, 5, 7, 10, 15, 20, 23, and 26) mass% of aqueous Na2SO4 solutions have been measured in the liquid phase with a capillary flow technique. Measurements were made at five isobars 0.1, 10, 20, 30, and 40 MPa. The range of temperatures was from 298.15 to 573.5 K. The total uncertainty of viscosity, pressure, temperature, and concentration measurements was estimated to be less than 1.5%, 0.05%, 15 mK, and 0.015%, respectively. The reliability and accuracy of the experimental method was confirmed with measurements on pure water for four selected isobars 5, 10, 20, and 40 MPa and at temperatures between 296.7 and 573.7 K. The experimental and calculated values from IAPWS (International Association for the Properties of Water and Steam) formulation for the viscosity of pure water show excellent agreement within their experimental uncertainty (AAD = 0.41%). The temperature, pressure, and concentration dependences of the relative viscosity (η/η0) where η0 is the viscosity of pure water are studied. The values of the viscosity A-, B-, and D-coefficients of the extended Jones–Dole equation for the relative viscosity (η/η0) of aqueous Na2SO4 solutions as a function of temperature are studied. The maximum of the B-coefficient near the 323 K isotherm has been found. The behavior of the concentration dependence of the relative viscosity of aqueous Na2SO4 solutions is discussed in terms of the modern theory of transport phenomena in electrolyte solutions. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by Falkenhagen–Dole theory of electrolyte solutions and calculated with the ionic B-coefficient data. Different theoretical models for the viscosity of electrolyte solutions were stringently tested with new accurate measurements on aqueous Na2SO4. The quality and predictive capability of the various models was studied. The measured values of viscosity were directly compared with the data reported in the literature by other authors.  相似文献   

12.
The apparent molar volumes and isentropic compressibility of glycine, l-alanine and l-serine in water and in aqueous solutions of (0.500 and 1.00) mol · kg?1 di-ammonium hydrogen citrate {(NH4)2HCit} and those of (NH4)2HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH4)2HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH4)2HCit}, {alanine + (NH4)2HCit}, and {serine + (NH4)2HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.  相似文献   

13.
Density data for dilute aqueous solutions of two aliphatic ketones (3-pentanone, 2,4-pentanedione) are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to either T = 573 K (3-pentanone) or T = 498 K (2,4-pentanedione) and at pressure close to the saturated vapour pressure of water, at pressures between 15 MPa and 20 MPa and at p = 30 MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter.  相似文献   

14.
Electrochemical cells with two ion-selective electrodes against a single-junction reference electrode were used to obtain the activity coefficients of glycine in aqueous electrolyte solutions. Activity coefficient data were presented for {H2O  +  KCl (mS)  +  glycine (mA)}, and {H2O  +  NaCl (mS)  +  glycine (mA)} atT =  298.15 K and T =  308.15 K, respectively. The results show that the presence of an electrolyte and the nature of its cation have a significant effect on the activity coefficient of glycine in aqueous electrolyte solutions and, in turn, on the method of separation from its culture media. The results of the mean ionic activity coefficients of KCl were compared with those values reported in the literature, which were obtained by the isopiestic method. It was found that the method applied in this study provides accurate activity coefficient data. The effect of temperature on the mean ionic activity coefficient of NaCl in presence of glycine was also investigated.  相似文献   

15.
This work reports new experimental density data (954 points) for binary mixtures of 1-heptanol + heptane over the composition range (seven compositions; 0  1-heptanol mole fraction x  1), between 298.15 and 393.15 K, and for 23 pressures from 0.1 MPa up to 140 MPa. An Anton Paar vibrating tube densimeter, calibrated with an uncertainty of ±0.7 kg · m−3 was used to perform these measurements. The experimental density data were fitted with a Tait-like equation with low standard deviations. Excess volumes have been calculated from the experimental data. In addition, the isobaric thermal expansivity and the isothermal compressibility have been derived from the Tait-like equation, provided as supplementary material.  相似文献   

16.
The previous isopiestic investigations of HTcO4 aqueous solutions at T = 298.15 K are believed to be unreliable, because of the formation of a ternary mixture at high molality. Consequently, published isopiestic molalities for aqueous HTcO4 solutions at T = 298.15 K were completed and corrected. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for pertechnetic acid HTcO4 were determined by direct water activity measurements. These measurements extend from molality m = 1.4 mol · kg−1 to m = 8.32 mol · kg−1. The variation of the osmotic coefficient of this acid in water is represented mathematically. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scale. The density law leads to the partial molar volume variations for aqueous HTcO4 solutions at T = 298.15 K, which are compared with published data.  相似文献   

17.
The heat capacity of water in the form of hexagonal ice was measured between T = 0.5 K and T = 38 K using a semi-adiabatic calorimetric method. Since heat capacity data below T = 2 K have never been measured for water, this study presents the lowest measured values of the specific heat of water to date. Fits of the data were used to generate thermodynamic functions of water at smoothed temperatures between 0.5 K and 38 K. Both our experimental heat capacities and calculated enthalpy increments agree well with previously published values and thus supplement other studies well.  相似文献   

18.
Isopiestic measurements have been carried out at the temperature 298.15 K for two saturated aqueous solutions: {H2O + BaCl2(sat) + NaCl + NH4Cl} saturated with barium chloride and {H2O + BaCl2(sat) + mannitol(sat) + NaCl + NH4Cl} saturated with barium chloride and mannitol. Taking sodium chloride (aq) as reference solutions, osmotic coefficients of the aqueous solutions were determined. The experimental results are well represented by the ideal-like solution model.  相似文献   

19.
Densities of amino acids in aqueous and in aqueous electrolyte solutions have been measured by a high precision vibrating tube digital densitometer at T = 298.15 K under atmospheric pressure. The investigated systems contained amino acids of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly2), triglycine (Gly3), and tetraglycine (Gly4) and cyclic glycylglycine (c(GG)) with electrolytes of potassium chloride (KCl), potassium bromide (KBr) and potassium acetate (KAc). In this series of measurements, the aqueous samples were prepared with various concentrations of the amino acids, up to saturated conditions, and over salt concentrations from 1 to 4 M. The density increments resulting from the addition of the different model compounds of amino acids and the ionic salts were investigated, respectively. An empirical linear combination equation with an augmented term to account the interactions between amino acid and ionic salt was used to quantitatively correlate the experimental densities over the entire concentration ranges.  相似文献   

20.
Density data for dilute aqueous solutions of four aliphatic ethers (2,5-dioxahexane, 3,5-dioxaheptane, 3,6-dioxaoctane, and 2,5,8-trioxanonane) and one ether-alcohol (3,6-dioxa-1-heptanol) are presented together with partial molar volumes at infinite dilution calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to either T = 443 K (3,5-dioxaheptane) or T = 573 K (other solutes) and at pressures close to the saturated vapour pressure of water, at pressures between 15 and 20 MPa and at p = 30 MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号