首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吕述晖  王奎华  张鹏 《力学学报》2015,47(1):169-173
针对桩与连续梁组合这一基础形式,研究了梁—桩—土竖向耦合振动特性. 首先,将桩假设为一维黏弹性杆件,采用平面应变模型模拟桩侧成层土对桩的动力作用. 同时,桩顶对梁的支撑简化为竖向点支撑. 然后,分别根据一维杆件纵向振动理论和Timoshenko梁理论给出桩和梁的竖向振动控制方程并求解,进而借助离散傅里叶逆变换获得在梁上瞬时激振下梁和土层以上桩段的时域响应半解析解. 通过与有限元模拟结果对比,验证了解的合理性. 在此基础上,讨论了梁几何参数和桩身缺陷对梁—桩—土竖向耦合振动特性的影响.   相似文献   

2.
Consideration is given to the dynamic response of a Timoshenko beam under repeated pulse loading. Starting with the basic dynamical equations for a rotating radial cantilever Timoshenko beam clamped at the hub in a centrifugal force field, a system of equations are derived for coupled axial and lateral motions which includes the transverse shear and rotary inertia effects, as well. The hyperbolic wave equation governing the axial motion is coupled with the flexural wave equation governing the lateral motion of the beam through the velocity-dependent skew-symmetric Coriolis force terms. In the analytical formulation, Rayleigh-Ritz method with a set of sinusoidal displacement shape functions is used to determine stiffness, mass and gyroscopic matrices of the system. The tip of the rotating beam is subjected to a periodic pulse load due to local rubbing against the outer case introducing Coulomb friction in the system. Transient response of the beam with the tip deforming due to rub is discussed in terms of the frequency shift and non-linear dynamic response of the rotating beam. Numerical results are presented for this vibro-impact problem of hard rub with varying coefficients of friction and the contact-load time. The effects of beam tip rub forces transmitted through the system are considered to analyze the conditions for dynamic stability of a rotating blade with intermittent rub.  相似文献   

3.
The quasi-static and dynamic responses of a thermoviscoelastic Timoshenko beam subject to thermal loads are analyzed. First, based on the small geometric deformation assumption and Boltzmann constitutive relation, the governing equations for the beam are presented. Second, an extended differential quadrature method(DQM)in the spatial domain and a differential method in the temporal domain are combined to transform the integro-partial-differential governing equations into the ordinary differential equations. Third, the accuracy of the present discrete method is verified by elastic/viscoelastic examples, and the effects of thermal load parameters, material and geometrical parameters on the quasi-static and dynamic responses of the beam are discussed. Numerical results show that the thermal function parameter has a great effect on quasi-static and dynamic responses of the beam. Compared with the thermal relaxation time, the initial vibrational responses of the beam are more sensitive to the mechanical relaxation time of the thermoviscoelastic material.  相似文献   

4.
Nonlinear dynamics of an inclined beam subjected to a moving load   总被引:1,自引:0,他引:1  
In this paper, the nonlinear dynamic response of an inclined pinned-pinned beam with a constant cross section, finite length subjected to a concentrated vertical force traveling with a constant velocity is investigated. The study is focused on the mode summation method and also on frequency analysis of the governing PDEs equations of motion. Furthermore, the steady-state response is studied by applying the multiple scales method. The nonlinear response of the beam is obtained by solving two coupled nonlinear PDEs governing equations of planar motion for both longitudinal and transverse oscillations of the beam. The dynamic magnification factor and normalized time histories of mid-pint of the beam are obtained for various load velocity ratios and the outcome results have been illustrated and compared to the results with those obtained from traditional linear solution. The appropriate parametric study considering the effects of the linear viscous damping, the velocity of the traveling load, beam inclination angle under zero or nonzero axial load are carried out to capture the influence of the effect of large deflections caused by stretching effects due to the beam’s immovable ends. It was seen that quadratic nonlinearity renders the softening effect on the dynamic response of the beam under the act of traveling load. Also in the case where the object leaves the inclined beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption. Moreover, the stability analysis of steady-state response for the modes equations having quadratic nonlinearity was carried out and it was observed from the frequency response curves that for the considered parameters in the case of internal-external primary resonance, both saturation phenomenon and jump phenomenon can be predicted for the longitudinal excitation.  相似文献   

5.
The quasi-static response and the stored and dissipated energies due to large deflections of a slender inextensible beam made of a linear viscoelastic material and subjected to a time-dependent inclined concentrated load at the free end are investigated. The beam cross-section is considered prismatic, the self-weight is disregarded and the material is initially stress free. The set of four first-order non-linear partial integro-differential equations obtained from geometrical compatibility, equilibrium of forces and moments, and linear viscoelastic constitutive relation is numerically solved using a one-parameter shooting method combined with a fourth-order Runge-Kutta algorithm. An analytical expression is derived to divide the energy supplied by the external load into conserved and dissipated parts. For the case study presented, a three-parameter solid linear viscoelastic constitutive model is employed and a step load is applied. The variables are made non-dimensional, so four parameters govern the problem: the ratio between the final and initial relaxation moduli, the load magnitude, the angle of inclination and the unloading time. A finite-element model is also performed to compare and validate the analytical and numerical formulations. Results are presented for encastré curvature and tip displacement versus time, geometrical configuration, load versus tip displacement, total work done by the external force, stored and dissipated energies versus time, energy per unit length along arc length for three times and versus time for two beam sections.  相似文献   

6.
内共振条件下直线运动梁的动力稳定性   总被引:31,自引:4,他引:31  
冯志华  胡海岩 《力学学报》2002,34(3):389-400
基于Kane方程,建立起了包含有耦合的三次几何及惯性非线性项大范围直线运动梁动力学控制方程.利用多尺度法并结合笛卡尔坐标变换,对所得方程进行一次近似展开,着重对满足一、二阶模态间3:1内共振现象的两端铰支梁参激振动平凡解稳定性进行了详尽的分析,得出了稳定性边界的解析表达式.采用中心流形定理对调制微分方程组进行降维处理,分析了相应Hopf分岔类型并通过数值计算发现了稳定的极限环存在.  相似文献   

7.
The dynamic stability and self-excited posteritical whirling of rotating transversally loaded shaft made of a standard material with elastic and viscous nonlinearities are analyzed in this paper using the theory of bifurcations as a mathematical tool. Partial differential equations of motion are derived under assumption that von Karman's nonlinearity is absent but geometric curvature nonlinearity is included. Galerkin's first-mode discretization procedure is then applied and the equations of motion are transformed to two third-order nonlinear equations that are analyzed using the theory of bifurcation. Condition for nontrivial equilibrium stability is determined and a bifurcating periodic solution of the second-order approximation is derived. The effects of dimensionless stress relaxation time and cubic elastic and viscous nonlinearities as well as the role of the transverse load are studied in the exemplary numerical calculations. A strongly stabilizing influence of the relaxation time is found that may eliminate self-excited vibration at all. Transition from super- to subcritical bifurcation is observed as a result of interaction between system nonlinearities and the transverse load.  相似文献   

8.
Summary A dimensionless number, termed response number in the present paper, is suggested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic governing equations of beams and plates. The number is defined as the product of the Johnson's damage number and the square of the half of the slenderness ratio for a beam; the product of the damage number and the square of the half of the aspect ratio for a plate or membrane loaded dynamically. Response number can also be considered as the ratio of the inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are reflected in this dimensionless number: the inertia of the applied dynamic loading, the resistance ability of the material to the deformation caused by the loading and the geometrical influence of the structure on the dynamic response. For an impulsively loaded beam or plate, the final dimensionless deflection is solely dependent upon the response number. When the secondary effects of finite deflections, strain-rate sensitivity or transverse shear are taken into account, the response number is as useful as in the case of simple bending theory. Finally, the number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of general shape. Received 17 October 1997; accepted for publication 19 March 1998  相似文献   

9.
By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a slender timber beam strengthened with the FRP sheet is established under the hypothesis of the large deflection deformation of the beam. Nonlinear governing equations of the second order effect of the beam bending are derived. The nonlinear stability of a simply-supported slender timber column strengthened with the FRP sheet is then investigated. An expression of the critical load of the simply-supported FRP-strengthened timber beam is obtained. The existence of postbuckling solution of the timber column is proved theoretically, and an asymptotic analytical solution of the postbuckling state in the vicinity of the critical load is obtained using the perturbation method. Parameters are studied showing that the FRP reinforcement layer has great influence on the critical load of the timber column, and has little influence on the dimensionless postbuckling state.  相似文献   

10.
By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a slender timber beam strengthened with the FRP sheet is established under the hypothesis of the large deflection deformation of the beam. Nonlinear governing equations of the second order effect of the beam bending are derived. The nonlinear stability of a simply-supported slender timber column strengthened with the FRP sheet is then investigated. An expression of the critical load of the simply-supported FRP-strengthened timber beam is obtained. The existence of postbuckling solution of the timber column is proved theoretically, and an asymptotic analytical solution of the postbuckling state in the vicinity of the critical load is obtained using the perturbation method. Parameters are studied showing that the FRP reinforcement layer has great influence on the critical load of the timber column, and has little influence on the dimensionless postbuckling state.  相似文献   

11.
几何缺陷浅拱的动力稳定性分析   总被引:3,自引:1,他引:2  
研究了几何缺陷对粘弹性铰支浅拱动力稳定性能的影响。从达朗贝尔原理和欧拉-贝努利假定出发推导了粘弹性铰支浅拱在正弦分布突加荷载作用下的动力学控制方程,并采用Galerkin截断法得到了可用龙格-库塔法求解的无量纲化非线性微分方程组。同时引入能有效追踪结构动力后屈曲路径的广义位移控制法,对含几何缺陷浅拱的响应曲线进行几何、材料双重非线性有限元分析。用这两种方法分析了前三阶谐波缺陷对浅拱动力稳定性能的影响,其中动力临界荷载由B-R准则判定。主要结论有:材料粘弹性使浅拱动力临界荷载增大且结构响应曲线与弹性情况差别很大;二阶谐波缺陷影响显著,它使动力临界荷载明显下降且使得浅拱粘弹性动力临界荷载可能低于弹性动力临界荷载。  相似文献   

12.
The purpose of this paper is to examine a highly nonlinear model of a slender beam which yields chaotic solutions for some forcing amplitudes. The study is unique in that the governing partial differential equations are solved directly, and that the model lends itself to a more physical analysis of the beam than traditional chaotic models. In addition, the analysis will provide proof that a beam experiencing moderate deformations without stops or an initial axial force can exhibit chaotic motion. The model represents a simply-supported. Euler-Bernoulli beam subjected to a transverse load. The forcing function is sinusoidally distributed in space with an amplitude which also varies sinusoidally in time and is assumed to reach a maximum sufficient to allow nonlinearities associated with finite deformations to become important. During motion, even though displacements are large, the beam is assumed to attain only small strain levels and thus is assumed to be linearly elastic. The results indicate that for most levels of the forcing function the response of the beam is periodic. However, the steady state motion is not sinusoidal in time and in fact exhibits some bifurcated motions. At a certain level of the forcing amplitude, an asymmetry is observed and the periodicity of the motion breaks down as the beam experiences a period doubling cascade which culminates in a chaotic motion. The progression from periodic to chaotic motion is presented through a series of phase plane and Poincané plots, and physical variables such as bending moment are examined.  相似文献   

13.
In this study, the torsional vibration and stability problems of functionally graded (FG) orthotropic cylindrical shells in the elastic medium, using the Galerkin method was investigated. Pasternak model is used to describe the reaction of the elastic medium on the cylindrical shell. Mixed boundary conditions are considered. The material properties and density of the orthotropic cylindrical shell are assumed to vary exponentially in the thickness direction. The basic equations of the FG orthotropic cylindrical shell under the torsional load resting on the Pasternak-type elastic foundation are derived. The expressions for the critical torsional load and dimensionless torsional frequency parameter of the FG orthotropic cylindrical shell resting on elastic foundations are obtained. The effects of variations of shell parameters, the exponential factor characterizing the degree of material gradient, orthotropy, foundation stiffness and shear subgrade modulus of the foundation on the critical torsional load and dimensionless torsional frequency parameter are examined.  相似文献   

14.
In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing potential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.  相似文献   

15.
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributedparameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested.We also illustrate that the damping and load resistance affect the initiation excitation threshold.  相似文献   

16.
Based on Timoshenko beam theory, the dynamic response of an elastically connected multiple-beam system is investigated. The identical prismatic beams are assumed to be parallel and connected by a finite number of springs. Assuming n parallel Timoshenko beams, the motion of the system is described by a coupled set of 2n partial differential equations. The method involves a change of variables and modal analysis to decouple and to solve the governing differential equations, respectively. A case study is solved in detail to demonstrate the methodology and several plots of the midpoint deflections of beams are given and investigated for different values of moving load velocity and the stiffness of elastic connections. From the numerical results it is observed that the maximum deflection of the multiple Timoshenko beam system is always smaller than one of a single beam.  相似文献   

17.
本文利用渐近迭代法获得了边界弹性支撑的功能梯度扁球壳的非线性屈曲问题的理论解.假设材料组分体积分数沿壳体厚度方向呈sigmoid幂函数变化,边界上考虑一般的弹性支撑约束.基于经典的薄壳理论和几何非线性关系,导出了S型功能梯度扁球壳的非线性屈曲问题的控制方程.采用渐近迭代法通过两次迭代得到了无量纲挠度和均布荷载之间的非线性特征关系.通过与已有有限元方法和其他数值方法的结果对比,验证了本文解的有效性和高精度.同时,通过计算阐述了缺陷因子、材料参数、边界约束系数及特征几何参数对壳体临界屈曲荷载的影响.  相似文献   

18.
Free vibration analysis of a rotating double-tapered Timoshenko beam undergoing flapwise transverse vibration is presented. Using an assumed mode method, the governing equations of motion are derived from the kinetic and potential energy expressions which are derived from a set of hybrid deformation variables. These equations of motion are then transformed into dimensionless forms using a set of dimensionless parameters, such as the hub radius ratio, the dimensionless angular speed ratio, the slenderness ratio, and the height and width taper ratios, etc. The natural frequencies and mode shapes are then determined from these dimensionless equations of motion. The effects of the dimensionless parameters on the natural frequencies and modal characteristics of a rotating double-tapered Timoshenko beam are numerically studied through numerical examples. The tuned angular speed of the rotating double-tapered Timoshenko beam is then investigated.  相似文献   

19.
The dynamic response of orthotropic sandwich composite plates impacted by time-dependent external blast pulses is studied by use of numerical techniques. The theory is based on classical sandwich plate theory including the large deformation effects, such as geometric non-linearities, in-plane stiffness and inertias, and shear deformation. The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solutions are assumed for the space domain and substituted into the equations of motion. Then the Galerkin Method is used to obtain the non-linear differential equations in the time domain. The finite difference method is applied to solve the system of coupled non-linear equations. The results of theoretical analyses are obtained and compared with ANSYS results. Effects of the face sheet number, as well as those related to the ply-thickness, core thickness, geometrical non-linearities, and of the aspect ratio are investigated. Detailed analyses of the influence of different type of pressure pulses on dynamic response are carried out.  相似文献   

20.
This paper deals with the equilibria of an elastically-coupled cable-suspended beam system, where the beam is assumed to be extensible and subject to a compressive axial load. When no vertical load is applied, necessary and sufficient conditions in order to have nontrivial solutions are established, and their explicit closed-form expressions are found. In particular, the stationary solutions are shown to exhibit at most two non-vanishing Fourier modes and the critical values of the axial-load parameter which produce their pitchfork bifurcation (buckling) are established. Depending on two dimensionless parameters, the complete set of resonant modes is devised. As expected, breakdown of the pitchfork bifurcations under perturbation is observed when a distributed transversal load is applied to the beam. In this case, both unimodal and bimodal stationary solutions are studied in detail. Finally, the more complex behavior occurring when trimodal solutions are involved is briefly sketched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号