首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature on the physical properties of some ionic liquids was investigated. Density, refractive index, surface tension, dynamic and kinematic viscosities of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate anions were measured at various temperatures (density from T = (278.15 to 363.15) K, refractive index from (293.15 to 343.15) K, surface tension from (283.15 to 333.15) K, dynamic viscosity from (283.15 to 368.15) K, and kinematic viscosity from (298.15 to 363.15) K). The volumetric properties for the ionic liquids were also calculated from the experimental values of the density at T = 298.15 K. The Vogel–Fulcher–Tammann (VFT) equation was applied to correlate experimental values of dynamic and kinematic viscosities as a function of temperature. As well, the relation between density and refractive index was correlated satisfactorily with several empirical equations such as Lorentz–Lorenz, Dale–Gladstone, Eykman, Oster, Arago–Biot, Newton and Modified–Eykman. Finally, the relation between surface tension and viscosity was investigated and the parachor method was used to predict density, refractive index and surface tension of the ionic liquids.  相似文献   

2.
The air–liquid interfacial tensions of eight ionic liquids, from (298 to 343) K, are presented in this work. The studied ionic liquids are formed by the fixed 1-ethyl-3-methylimidazolium cation combined with the anions acetate, dicyanamide, dimethylphosphate, methylphosphonate, methanesulfonate, thiocyanate, tosylate, and trifluoromethanesulfonate. The selected ionic liquids allowed a comprehensive study through the influence of the anion nature on the surface tension and on their surface ordering. A slight dependence of the surface tension with the ionic liquid molar volume was identified. The surface thermodynamic functions are mainly controlled by the anion which constitutes a given ionic liquid. The hypothetical critical temperatures of all ionic liquids were estimated by means of the Eötvos and Guggenheim correlations and are presented.  相似文献   

3.
A systematic study of densities and refractive indices of 17 room temperature ionic liquids is presented at four different temperatures ranging from 293 K to 333 K. The ionic liquids are grouped into four families: 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, [Cnmim][Ntf2], ionic liquids (with n = 2, 4, 6, 8, 10, 12, and 14); 1-alkyl-3-methylimidazolium hexafluorophosphate, [Cnmim][PF6], ionic liquids (with n = 4, 6, 8); ionic liquids based on the trihexyl(tetradecyl)phosphonium cation, [P6 6 6 14], combined with the anions bis(trifluoromethylsulfonyl)amide, [Ntf2], acetate, [OAc], and triflate, [OTf]; and [C4mim]-based ionic liquids combined with the anions [OAc], [OTf], methylsulfate [MeSO4], and tetrafluoroborate [BF4]. The data obtained were analysed to determine the effect of (i) temperature, (ii) the alkyl chain length of the 1-alkyl-3-methylimidazolium cation, and (iii) the nature of the anion. Different empirical models for the calculation of the densities of the ionic liquids were tested. Molar refractions were also calculated from the volumetric and refractive index data and the values were discussed with the aim of checking their utility in obtaining insights on the intermolecular forces and behaviour in solution of the different ionic liquids.  相似文献   

4.
Synthesis of new ionic liquids (ILs) viz. 1-butyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [BCN3Py][NTf2], 1-hexyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [HCN3Py][NTf2], 1-hexyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [HCN4Py][NTf2], and 1-octyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [OCN3Py][NTf2] were performed. The specific basic characterization of new compounds by NMR spectra, elementary analysis, water content and glass transition temperature as well as melting temperature, enthalpy of fusion and decomposition of compounds TG/DTA determined by the differential scanning calorimetry, DSC is presented. The heat capacity was measured at three temperatures (298.15, 323.15, and 353.15) K and at pressure 0.1 MPa. The effect of temperature on the density and viscosity is reported over the temperature range from (293.15 to 363.15) K and at 0.1 MPa. The density and viscosity correlation for these systems was provided by an empirical polynomial. From the density–temperature dependence, the isothermal expansion coefficient (volume expansivity), α, was calculated. The surface tension of pure ionic liquids was measured at 0.1 MPa at five temperatures (298.15, 308.15, 318.15, 328.15, and 338.15) K. The surface thermodynamic functions such as surface entropy and enthalpy, critical temperatures according to the Eötvös and Guggenheim definition and the total surface energy of the ILs studied were derived from the temperature dependence of the surface tension values. The parachor and speed of sound for pure ionic liquids were described within a range of temperature from (298.15 to 338.15) K. A qualitative analysis on these quantities in terms of molecular interactions is reported.  相似文献   

5.
Two novel ionic liquids based on serine [Cnmim][Ser] (n = 3, 4) were prepared by the neutralization method and their structures were confirmed by 1H NMR spectroscopy and differential scanning calorimetry (DSC). The density, surface tension, and refractive index of the two ILs were measured from T = (298.15 to 338.15) K. Since these ILs [Cnmim][Ser] (n = 3, 4) could form strong hydrogen bonds with water, small amount of water in the ILs is difficult to removed by common methods. In order to eliminate the effect of trace of water, the standard addition method (SAM) was applied to these measurements. On the basis of the experimental data, the speed of sound (μ), thermal expansion coefficient (α), molecular volume (Vm), standard entropy (S0298), entropy of surface (Sa), energy of surface (Ea), parachor (P), molar polarization (Rm), and polarization coefficient (αp) were calculated, and the relationship between each of these properties of [Cnmim][Ser] (n = 3, 4) and temperatures was discussed. According to the additivity, the average value of anionic parachor, P(ave), was 180.81 for [Ser]. At the same time, the surface tension of these serine ionic liquids could be estimated from their parachor and refractive index. The estimated values of the surface tension and the corresponding experimental data were almost identical.  相似文献   

6.
A new group of room temperature ionic liquids based on triethylalkylphosphonium cations together with a bis(trifluoromethylsulfonyl)imide anion as a novel electrolyte is presented in this report. It was found that phosphonium ionic liquids showed lower viscosities and higher conductivities than those of the corresponding ammonium ionic liquids. Particularly, phosphonium ionic liquids containing a methoxy group, triethyl(methoxymethyl)phosphonium bis(trifluoromethylsulfonyl)imide and triethyl(2-methoxyethyl)phosphonium bis(trifluoromethylsulfonyl)imide, exhibited quite low viscosities (35 and 44 mPa s at 25 °C, respectively). Linear sweep voltammetry measured in neat phosphonium ionic liquids at a glassy carbon electrode indicated wide potential windows (at least −3.0 to +2.3 V vs. Fc/Fc+). Thermogravimetric analysis suggested that phosphonium ionic liquids were thermally stable up to nearly 400 °C, showing slower gravimetric decreases at high temperature compared to those of the corresponding ammonium ionic liquids.  相似文献   

7.
The osmotic and activity coefficients and vapour pressures of binary mixtures containing 1-propanol, or 2-propanol and imidazolium-based ionic liquids with bis(trifluoromethylsulfonyl)imide as anion (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C2MimNTf2, 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, C3MimNTf2, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C4MimNTf2) were determined at T = 323.15 K using the vapour pressure osmometry technique. The experimental osmotic coefficients were correlated using the extended Pitzer model modified by Archer and the MNRTL model, obtaining standard deviations lower than 0.033 and 0.064, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the mixtures studied were calculated from the parameters of the extended Pitzer model modified by Archer. Besides the effect of the alkyl-chain of the cation, the effect of the anion can be assessed comparing the experimental results with those previously obtained for imidazolium ionic liquids with sulphate anions.  相似文献   

8.
Experimental air–liquid interfacial tension data and density data are presented for three 1-Cn-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphates (FAP), [CnMIM][(C2F5)3PF3], with n = 2, 4, and 6, measured at atmospheric pressure in the temperature range from 267 K to 360 K using the Krűss K100MK2 tensiometer. The accuracy of the surface tension measurements was checked by employing the Wilhelmy plate and the du Noüy ring methods in parallel. The combined standard uncertainty associated with the Wilhelmy plate method is estimated to be ±0.1 mN · m−1. The density data were obtained using buoyancy method with an estimated standard uncertainty less then ±0.4 kg · m−3 (3 · 10−4ϱ). The chloride anions decrease the density of the tris(pentafluoroethyl)trifluorophosphates of interest up to six times more effectively than they decrease the density of the imidazolium based tetrafluoroborates. A QSPR analysis of the surface tension of imidazolium based ionic liquids with BF4, TFA, DCA, FAP, NTf2, and PF6 anions indicates, that the FAP ionic liquids fit well into the analyzed group of imidazolium based ionic liquids while those having hexafluorophosphate anion show anomalously high deviations of the experimental surface tension from the values predicted by the QSPR model.  相似文献   

9.
Air–liquid interfacial surface tension measurements are reported on four 1-alkyl-3-methylimidazolium ([Cn-mim], n = 2, 4, 6) based ionic liquids at 15 temperatures from (283 to 353) K at atmospheric pressure. To validate the accuracy of the results, the Wilhelmy plate method and the du Noüy ring method were employed in parallel, using the Kr?ss K100MK2 tensiometer. At each temperature from 29 to 44 individual readings were taken. The surface tension average values at particular temperatures are presented with the estimated overall standard uncertainty ranging from (±0.025 to ±0.1) mN · m?1. An empirical surface tension–temperature equation has been developed describing the temperature dependence of each ionic liquid surface tension. Some details of the measurement procedure that have been found to be important in achieving the highest possible accuracy are discussed.  相似文献   

10.
In this letter we report on the decomposition of the bis (trifluoromethylsulfonyl) amide (TFSA) anion under quite mild electrochemical conditions. The results show clearly that the TFSA anion can easily be decomposed during anodic oxidation of copper in the ionic liquid 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) amide [BMP] TFSA at 70 °C leading to the formation of CuF2. At room temperature, however, no significant decomposition was obtained. Therefore, one has to be very careful in applying ionic liquids based on TFSA anions under anodic conditions at elevated temperature as the TFSA anion might decompose, depending on the anode material.  相似文献   

11.
In this work, the solubility of water in several tetradecyltrihexylphosphonium-based ionic liquids at 298.15 K, and densities and viscosities of both pure and water-saturated ionic liquids in a broad temperature range were measured. The selected ionic liquids comprise the common tetradecyltrihexylphosphonium cation combined with the following anions: bromide, chloride, bis(trifluoromethylsulfonyl)imide, decanoate, methanesulfonate, dicyanamide and bis(2,4,4-trimethylpentyl)phosphinate. The isobaric thermal expansion coefficients for pure and water-saturated ionic liquids were determined based on the density dependence with temperature. Taking into account that the excess molar volumes of the current hydrophobic water-saturated ionic liquids are negligible, the solubility of water was additionally estimated from the gathered density data and compared with the experimental solubilities obtained. Moreover, the experimental densities were compared with those predicted by the Gardas and Coutinho model while viscosity data were correlated using the Vogel–Tammann–Fulcher method.  相似文献   

12.
A new falling-body viscometer has been implemented to measure viscosity of liquids in a temperature range from (313.15 to 363.15) K at pressures up to 150 MPa. The accuracy of the viscometer was verified after comparing experimental results of squalane with previous literature data finding an average absolute deviation lower than 1.5%. With this device, we have measured viscosity values for three ionic liquids: 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-1-methylpyrrolidinium bis(trifluoro-methylsulfonyl)imide and 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide within the temperature and pressure ranges noted above. The experimental values were correlated as a function of temperature and pressure with four different equations. In addition, we have analysed the pressure–viscosity derived properties for these fluids and for other five ionic liquids using literature values.  相似文献   

13.
Binary electrolytes composed of ionic liquids and boric esters were prepared by studying compatibility between various combinations of such systems. The study showed that out of various combinations of ionic liquids/boric esters, only TFSI anion (or FSI anion) based ionic liquids/mesityldimethoxyborane (MDMB) systems were found to be miscible. After equimolar amount of lithium salts was added to ionic liquids, the resulting solution showed high ionic conductivity that was comparable to those for ionic liquids. The lithium transference number (tLi +) of these systems at room temperature was found to be very high. A maximum tLi + of 0.93 was observed for a binary mixture of AMImFSI [1-allyl-3-methylimidazolium bis(fluorosulfonyl)imide]/MDMB. Further, this binary mixture as electrolyte in Li/electrolyte/Si cell showed good reversible lithiation-delithiation with > 2500 mAh/g of delithiation specific capacity.  相似文献   

14.
Surface and bulk properties of 1-hexyl-3-methylimidazolium chloride [C6mim][Cl] as an ionic liquid (IL) have been investigated by surface tension and electrical conductivity techniques at various temperatures. Results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solution. Critical aggregation concentration (cac) values obtained by conductivity and surface tension measurements are in good agreement with values found in the literature. A series of important and useful adsorption parameters including cac, surface excess concentration (Γ), and minimum surface area per molecule (Amin) at the air + water interface were estimated from surface tension in the presence and absence of different electrolytes. Obtained data show that the surface tension as well as the cac of [C6mim][Cl] is reduced by electrolytes. Also, values of surface excess concentration (Γ) show that the IL ions in the presence of electrolyte have much larger affinity to adsorption at the surface and this affinity increased in aqueous electrolyte solution in the order of I? > Br? > Cl? for counter ion of salts that was explained in terms of a larger repulsion of chloride anions from interface to the bromide and iodide anion as well as difference in their excess polarizability.  相似文献   

15.
Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.  相似文献   

16.
(Liquid + liquid) equilibrium data for the ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMim][NTf2], 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMim][NTf2], and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [HMim][NTf2], mixed with ethanol and heptane were studied at T = 298.15 K and atmospheric pressure. The ability of these ionic liquids as solvents for the extraction of ethanol from heptane was evaluated in terms of selectivity and solute distribution ratio. Moreover, density and refractive index values over the miscible region for the ternary mixtures were also measured at T = 313.15 K. Finally, the experimental data were correlated with the Non Random Two Liquids (NRTL) and UNIversal QUAsi Chemical (UNIQUAC) thermodynamic models, and an exhaustive comparison with available literature data of the studied systems was carried out.  相似文献   

17.
The present study aims at evaluating the capability of phosphate-based salts, whose anions can coexist in water depending on the media pH, to promote aqueous biphasic systems (ABS) formation with 1-butyl-3-methylimidazolium-based ionic liquids, as well as to infer on the influence of the ionic liquid anion in the overall process of liquid–liquid demixing. In this context, novel phase diagrams of ABS composed of several imidazolium-based ionic liquids and three phosphate salts and a mixture of salts (K3PO4, K2HPO4, K2HPO4 + KH2PO4, and KH2PO4) were determined by the cloud point titration method at 298 K and atmospheric pressure. The corresponding tie-line compositions, tie-line lengths, and pH values of the coexisting phases were also determined. The ionic liquids ability to promote ABS is related with the hydrogen-bond basicity of the composing anion – the lower it is the higher the ability of the ionic fluid to undergo liquid–liquid demixing. Moreover, similar patterns on the ionic liquids sequence were observed with the different phosphate salts. The phosphate anion charge plays a determinant role in the formation of ABS. The two-phase formation aptitude (with a similar ionic liquid) decreases in the rank: K3PO4 > K2HPO4 > K2HPO4 + KH2PO4 > KH2PO4. Yet, besides the charge of the phosphate anion, the pH and ionic strength of the aqueous media also influence the phase separation ability.  相似文献   

18.
The solubility of hydrogen sulphide in three ionic liquids, viz. 1-hexyl-3-methylilmidazolium hexafluorophosphate ([hmim][PF6]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF4]), and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([hmim][Tf2N]), at temperatures ranging from 303.15 K to 343.15 K and pressures up to 1.1 MPa were determined. The solubility values were correlated using the Krichevsky–Kasarnovsky equation and Henry’s constants were obtained at different temperatures. Partial molar thermodynamic functions of solvation such as standard Gibbs free energy, enthalpy, and entropy were calculated from the solubility results. Comparison of the values obtained show that the solubility of H2S in these three ionic liquids was in the sequence: [hmim][BF4] > [hmim][PF6]  [hmim][Tf2N].  相似文献   

19.
In this paper, experimental densities and dynamic viscosities of 1-ethyl-3-methylimidazolium based ionic liquids (ILs) with the anions acetate and dicyanamide are presented in a wide temperature range (298.15 to 343.15 K) at atmospheric pressure. Surface tension of these ILs was measured at T = 298.15 K. The effect of water and/or ethanol compositions on densities and dynamic viscosities of these ILs are studied in binary and ternary mixtures. A quadratic mixing rule was used to correlate binary and ternary liquid densities. The Eyring–Patel–Teja model, which is recommended for polar and aqueous systems, is used to correlate dynamic viscosity data over the whole range of compositions and temperatures in binary and ternary mixtures. Temperature-dependent interaction parameters are introduced here to account for the changes of viscosities with temperature showing good agreements with experimental data.  相似文献   

20.
In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号