首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied comprehensively the helicity and H-bonding evolutions during the folding processes of Lys- and Arg-containing alanine-based peptides. The evolution of α-helical conformation concerning the entire sequence and each amino acid residue was examined, as well as the helix-forming propensities were characterized. The formation of various types of the intramolecular H-bonds was also investigated, pointing out the helix-stabilizing role of local interactions and the destabilizing role of non-local interplays. Our study led to the observation that the non-local H-bonds affected the evolution of helical conformations, as well as the entire folding processes.  相似文献   

2.
Protein-protein interactions are central to many biological processes, from intracellular communication to cytoskeleton assembly, and therefore represent an important class of targets for new therapeutics. The most common secondary structure in natural proteins is an α-helix. Small molecules seem to be attractive candidates for stabilizing or disrupting protein-protein interactions based on α-helices. In our study, we assessed the ability of oligopyridyl scaffolds to mimic the α-helical twist. The theoretical as well as experimental studies (X-ray diffraction and NMR) on conformations of bipyridines in the function of substituent and pyridine nitrogen positions were carried out. Furthermore, the experimental techniques showed that the conformations observed in bipyridines are maintained within a longer oligopyridyl scaffold (quaterpyridines). The alignment of the synthesized quaterpyridine with two methyl substituents showed that it is an α-helix foldamer; their methyl groups overlap very well with side chain positions, i and i + 3, of an ideal α-helix.  相似文献   

3.
Due to their equivalent lengths, δ-amino acids can serve as surrogates of α-dipeptides. However, δ-amino acids with proteinogenic side chains have not been well studied because of synthetic difficulties and because of their insolubility in organic solvents. Recently we reported the spontaneous supramolecular gelation of δ-peptides composed of β(O)-δ5-amino acids. Here, we report the incorporation of β(O)-δ5-amino acids as guests into the host α-helix, α,γ-hybrid peptide 12-helix and their single-crystal conformations. In addition, we studied the solution conformations of hybrid peptides composed of 1:1 alternating α and β(O)-δ5-amino acids. In contrast to the control α-helix structures, the crystal structure of peptides with β(O)-δ5-amino acids exhibit α-helical conformations consisting of both 13- and 10-membered H-bonds. The α,δ-hybrid peptide adopted mixed 13/11-helix conformation in solution with alternating H-bond directionality. Crystal-structure analysis revealed that the α,γ4-hybrid peptide accommodated the guest β(O)-δ5-amino acid without significant deviation to the overall helix folding. The results reported here emphasize that β(O)-δ5-amino acids with proteinogenic side chains can be accommodated into regular α-helix or 12-helix as guests without much deviation of the overall helix folding of the peptides.  相似文献   

4.
Protein engineering method to study the mutation effects on muscle acylphosphatase (AcP) has been actively applied to describe kinetics and thermodynamics associated with AcP aggregation as well as folding processes. Despite the extensive mutation experiments, the molecular origin and the structural motifs for aggregation and folding kinetics as well as thermodynamics of AcP have not been rationalized at the atomic resolution. To this end, we have investigated the mutation effects on the structures and thermodynamics for the aggregation and folding of AcP by using the combination of fully atomistic, explicit-water molecular dynamics simulations, and three-dimensional reference interaction site model theory. The results indicate that the A30G mutant with the fastest experimental aggregation rate displays considerably decreased α1-helical contents as well as disrupted hydrophobic core compared to the wild-type AcP. Increased solvation free energy as well as hydrophobicity upon A30G mutation is achieved due to the dehydration of hydrophilic side chains in the disrupted α1-helix region of A30G. In contrast, the Y91Q mutant with the slowest aggregation rate shows a non-native H-bonding network spanning the mutation site to hydrophobic core and α1-helix region, which rigidifies the native state protein conformation with the enhanced α1-helicity. Furthermore, Y91Q exhibits decreased solvation free energy and hydrophobicity compared to wild type due to more exposed and solvated hydrophilic side chains in the α1-region. On the other hand, the experimentally observed slower folding rates in both mutants are accompanied by decreased helicity in α2-helix upon mutation. We here provide the atomic-level structures and thermodynamic quantities of AcP mutants and rationalize the structural origin for the changes that occur upon introduction of those mutations along the AcP aggregation and folding processes.  相似文献   

5.
A new C-linked carbo-β-amino acid, (R)-β-Caa((r)), having a carbohydrate side chain with d-ribo configuration, was prepared from d-glucose by inverting the C-3 stereocenter to introduce constraints/interactions. From the NMR studies it was inferred that the new monomer may participate in additional electrostatic interactions, facilitating and enhancing novel folds in oligomeric peptides derived from it. The α/β-peptides, synthesized from alternating l-Ala and (R)-β-Caa((r)), have shown the presence of 14/15-helix by NMR (in CDCl(3), methanol-d(3) and CD(3)CN), CD and MD calculations. The hybrid peptides showed the presence of electrostatic interactions involving the intraresidue amide proton and the C3-OMe, which helped in the stabilization of the NH(i)···CO(i-4) H-bonds and adoption of 14/15-helix. The importance of such additional interactions has been well defined in recent times to stabilize the folding in a variety of peptidic foldamers. These observations suggest and emphasize that the side chain-backbone interactions are crucial in the stabilization of the desired folding propensity. The designed monomer thus enlarges the opportunities for the synthesis of peptides with novel conformations and expands the repertoire of the foldamers.  相似文献   

6.
The life time of aromatic radical cations is limited by reactions like β-elimination, dimerization, and addition to the solvent. Here we show that the attachment of such a radical cation to the C-terminal end of an α-/3(10)-helical peptide further reduces its life time by two orders of magnitude. For PPII-helical peptides, such an effect is only observed if the peptide contains an adjacent electron donor like tyrosine, which enables electron transfer (ET) through the peptide. In order to explain the special role of α-/3(10)-helical peptides, it is assumed that the aromatic radical cation injects a positive charge into an adjacent amide group. This is in accord with quantum chemical calculations and electrochemical experiments in the literature showing a decrease in the amide redox potentials caused by the dipole moments of long α-/3(10)-helical peptides. Rate measurements are in accord with a mechanism for a multi-step ET through α-/3(10)-helical peptides that uses the amide groups or H-bonds as stepping stones.  相似文献   

7.
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25. DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25. This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25. Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.  相似文献   

8.
Three sets of oligomers containing the 4-carboxy-5-methyloxazolidin-2-one (Oxd) moiety have been synthesized with the aim of checking whether these molecules are able to fold in ordered structures: A set [Boc-(L-Ala-L-Oxd)(n)-OR], B set [Boc-(L-Ala-D-Oxd)(n)-OR], and C set [Boc-(Aib-L-Oxd)(n)-OR] preferential conformations have been analyzed with IR absorption, NMR, and CD. We have noticed that in these oligomers three stabilizing effects are active: (i) the rigid Oxd -CO-N(CH<)-CO- moiety, which always tend to assume a trans conformation; (ii) the formation of Oxd C=O...H-(alpha)C intramolecolar H-bonds; (iii) the alternate formation of 1 <-- 4 intramolecular C=O...H-N H-bonds. Through the analysis of the experimental data, we could demonstrate that only the oligomers of the B set are able to meet all three requirements listed above. By a deeper insight into the CD spectra, we gathered that the secondary structure adopted by the B set oligomers is a beta-bend ribbon spiral, which is a subtype of the 3(10)-helix.  相似文献   

9.
Characteristic H-bonding patterns define secondary structure in proteins and nucleic acids. We show that similar patterns apply for α2-8 sialic acid (SiA) in H(2)O and that H-bonds define its structure. A (15)N,(13)C α2-8 SiA tetramer, (SiA)(4), was used as a model system for the polymer. At 263 K, we detected intra-residue through-H-bond J couplings between (15)N and C8 for residues R-I-R-III of the tetramer, indicating H-bonds between the (15)N's and the O8's of these residues. Additional J couplings between the (15)N's and C2's of the adjacent residues confirm the putative H-bonds. NH groups showing this long-range correlation also experience slower (1)H/(2)H exchange. Additionally, detection of couplings between H7 and C2 for R-II and R-III implies that the conformations of the linkers between these residues are different than in the monomers. These structural elements are consistent with two left-handed helical models: 2 residues/turn (2(4) helix) and 4 residues/turn (1(4) helix). To discriminate between models, we resorted to (1)H,(1)H NOEs. The 2(4) helical model is in better agreement with the experimental data. We provide direct evidence of H-bonding for (SiA)(4) and show how H-bonds can be a determining factor for shaping its 3D structure.  相似文献   

10.
The solution structure and the dimerization behavior of the lipophilic, highly C(alpha)-methylated model peptide, mBrBz-Iva(1)-Val(2)-Iva(3)-(alphaMe)Val(4)-(alphaMe)Phe(5)-(alphaMe)Val(6)-Iva(7)-NHMe, was studied by NMR spectroscopy and molecular dynamics simulations. The conformational analysis resulted in a right-handed 3(10)/alpha-helical equilibrium fast on the NMR time scale with a slight preference for the alpha-helical conformation. The NOESY spectrum showed intermolecular NOEs due to an aggregation of the heptapeptide. In addition, temperature-dependent diffusion measurements were performed to calculate the hydrodynamic radius. All these findings are consistent with an antiparallel side-by-side dimerization. The structure of the dimeric peptide was calculated with a simulated annealing strategy. The lipophilic dimer is held together by favorable van der Waals interactions in the sense of a bulge fitting into a groove. The flexibility of the helical conformations concerning an alpha/3(10)-helical equilibrium is shown in a 3 ns molecular dynamics simulation of the resulting dimeric structure. Both overall helical structures of each monomer and the antiparallel mode of dimerization are stable. However, transitions were seen of several residues from a 3(10)-helical into an alpha-helical conformation and vice versa. Hence, this peptide represents a good model in which two often-discussed aspects of hierarchical transmembrane protein folding are present: i <-- i + 3 and i <-- i + 4 local H-bonding interactions cause a specific molecular shape which is then recognized as attractive by other surrounding structures.  相似文献   

11.
The H4 histone tail plays a critical role in chromatin folding and regulation--it mediates strong interactions with the acidic patch of proximal nucleosomes and its acetylation at lysine 16 (K16) leads to partial unfolding of chromatin. The molecular mechanism associated with the H4 tail/acidic patch interactions and its modulation via K16 acetylation remains unknown. Here we employ a combination of molecular dynamics simulations, molecular docking calculations, and free energy computations to investigate the structure of the H4 tail in solution, the binding of the H4 tail with the acidic patch, and the effects of K16 acetylation. The H4 tail exhibits a disordered configuration except in the region Ala15-Lys20, where it exhibits a strong propensity for an α-helical structure. This α-helical region is found to dock very favorably into the acidic patch groove of a nucleosome with a binding free energy of approximately -7 kcal mol(-1). We have identified the specific interactions that stabilize this binding as well as the associated energetics. The acetylation of K16 is found to reduce the α-helix forming propensity of the H4 tail and K16's accessibility for mediating external interactions. More importantly, K16 acetylation destabilizes the binding of the H4 tail at the acidic patch by mitigating specific salt bridges and longer-ranged electrostatic interactions mediated by K16. Our study thus provides new microscopic insights into the compaction of chromatin and its regulation via posttranslational modifications of histone tails, which could be of interest to chromatin biology, cancer, epigenetics, and drug design.  相似文献   

12.
Five pentapeptides, GGGGG, GAGGG, GVGGG, GLGGG, and GIGGG, have been completely optimized in the 3(10)-helical and open beta-strand conformations at the B3LYP/D95 level. The energies of the helices relative to the beta-strands vary from -2.1 to -3.6 kcal and depend on the amino acid residue sequence. The energies of substituting A, V, L, or I for G in the second position are also presented. Vibrational analyses were performed on the optimized structures. Vibrational coupling through the individual H-bond chains of the helices is confirmed to be stronger than that through space or through the covalent bonds. The cooperative interactions of the H-bonds are evident from both the structures and the coupling of the amide I, amide II, and N-H vibrations.  相似文献   

13.
The role of cycloether-water (c-w) and water-water (w-w) hydrogen bonds (H-bonds) on the stability of the tetrahydrofuran THF/(H(2)O)(n) and the tetrahydropyran THP/(H(2)O)(n) complexes with n = 1-4 was investigated herein using the density functional and ab initio methods and the atoms in molecules theory. Geometry optimizations for these complexes were carried out with various possible initial guess structures. It was revealed that the major contributions of the mono and dihydrated complexes came from c-w H-bonds. A competition between c-w and w-w H-bonds contribution was observed for trihydrated complexes. For most of tetrahydrated complexes, the inter-water H-bonds provided the greatest contribution, whereas the c-w contributions were small but not negligible. It was confirmed that to produce a hydrophobic hydration of cycloethers, the C-H···O(w) H-bond should be associated with a network of H-bonds that connects both portions of the solute, through the formation of a bifunctional H-bond. A linear correlation is obtained for the sum of electron density at the bond critical points (ρ(b)) with the interaction energy (ΔE) and with the solute-solvent interaction energy (ΔE(s-w)) of the microhydrated complexes. In addition, a new way to estimate the energetic contribution as well as the preferential formation of the different H-bonds based completely on ρ(b) was found. Even more, it allows to differentiate the contribution from c-w interactions in both hydrophilic and hydrophobic contributions, it is therefore a useful tool for studying the hydration of large biomolecules. The analysis of the modifications in the atomic and group properties brought about by successive addition of H(2)O molecules allowed to pinpoint the atoms or molecular groups that undergo the greatest changes in electron population and energetic stabilization. It was identified that the remarkable stabilization of the water oxygen atoms is crucial for the stabilization of the complexes.  相似文献   

14.
《Tetrahedron》1988,44(3):877-886
In order to clarify the relationship between antimicrobial activity and peptide-structure, gramicidin S analogs and cationic α-helical model peptides were designed and synthesized. Introduction of cationic side chains in hydrophilic side of gramicidin S increased antimicrobial activity against Gram-negative bacteria. Amphiphilic structures of the α-helical peptides were found to be effective to show antimicrobial activities against Gram positive bacteria. Increase in number of cationic amino acid residues in the α-helical peptides caused appreciable antimicrobial activities against Gram-negative bacteria, however, induced lower activities against Gram-positive ones.  相似文献   

15.
The conformations of several oligoisocyanates have been investigated by NMR in order to study the onset and dynamics of helicity in polyisocyanates. Pentaethylbiuret and hexaethyltriuret were found to adopt turns and helices in solution. For hexaethyltriuret, symmetric and asymmetric helices are present. Not only is an interconversion of these forms observed (DeltaG(SA)(double dagger) = 9.3 +/- 0.4 kcal/mol) but also a reversal of helicity (DeltaG(PM)(double dagger) = 9.0 +/- 0.4 kcal/mol). The coalescence pattern for the latter process provides direct evidence for a concerted, conrotatory helical inversion.  相似文献   

16.
A statistical mechanical (one-dimensional Ising model) treatment, based on the dominance of short-range interactions, is developed in this series of papers; it is intended as an improvement over empirical prediction schemes for obtaining approximate initial conformations of proteins (to be used to try to deduce the native conformation by subsequent energy minimization). In the present paper, the statistical weights for a two-state model (alpha-helical and other conformations) and for a three-state model (alpha-helical, extended, and other conformations) are evaluated from x-ray data on 16 native proteins. The method for evaluating the statistical weights is presented. Asymmetric alpha-helical nucleation parameters are also evaluated for the 20 naturally occurring amino acids. On the basis of these statistical weights, the conformational properties of the twenty naturally occurring amino acids are discussed. The statistical weights evaluated from x-ray data are also discussed in comparison with experimental results on the helix--coil transition in polyamino acids in solution. The predominant role of short-range interactions, and some possible long-range effects in determining the statistical weights, are discussed in conjunction with the mechanism of protein folding.  相似文献   

17.
The electronic properties, specifically, the dipole and quadrupole moments and the ionization energies of benzene (Bz) and hydrogen cyanide (HCN), and the respective binding energies, of complexes of Bz(HCN)(1-4), have been studied through MP2 and OVGF calculations. The results are compared with the properties of benzene-water complexes, Bz(H(2)O)(1-4), with the purpose of analyzing the electronic properties of microsolvated benzene, with respect to the strength of the CH/π and OH/π hydrogen-bond (H-bond) interactions. The linear HCN chains have the singular ability to interact with the aromatic ring, preserving the symmetry of the latter. A blue shift of the first vertical ionization energies (IEs) of benzene is observed for the linear Bz(HCN)(1-4) clusters, which increases with the length of the chain. NBO analysis indicates that the increase of the IE with the number of HCN molecules is related to a strengthening of the CH/π H-bond, driven by cooperative effects, increasing the acidity of the hydrogen cyanide H atom involved in the π H-bond. The longer HCN chains (n ≥ 3), however, can bend to form CH/N H-bonds with the Bz H atoms. These cyclic structures are found to be slightly more stable than their linear counterparts. For the nonlinear Bz(HCN)(3-4) and Bz(H(2)O)(2-4) complexes, an increase of the binding energy with the number of solvent molecules and a decrease of the IE of benzene, relative to the values for the Bz(HCN) and Bz(H(2)O) complexes, respectively, are observed. Although a strengthening of the CH/π and OH/π H-bonds, with increasing n, also takes place for the Bz(H(2)O)(2-4) and Bz(HCN)(3-4) nonlinear complexes, Bz proton donor, CH/O, and CH/N interactions are at the origin of this decrease. Thus CH/π and OH/π H-bonds lead to higher IEs of Bz, whereas the weaker CH/N and CH/O H-bond interactions have the opposite effect. The present results emphasize the importance of both aromatic XH/π (X = C, O) and CH/X (X = N, O) interactions for understanding the structure and electronic properties of Bz(HCN)(n) and Bz(H(2)O)(n) complexes.  相似文献   

18.
We compare the energetic and structural properties of fully optimized α-helical and antiparallel β-sheet polyalanines and the energetic differences between axial and equatorial conformations of three cyclohexane derivatives (methyl, fluoro, and chloro) as calculated using several functionals designed to treat dispersion (B97-D, ωB97x-D, M06, M06L, and M06-2X) with other traditional functionals not specifically parametrized to treat dispersion (B3LYP, X3LYP, and PBE1PBE) and with experimental results. Those functionals developed to treat dispersion significantly overestimate interaction enthalpies of folding for the α-helix and predict unreasonable structures that contain Ramachandran φ and ψ and C = O[ellipsis (horizontal)]N H-bonding angles that are out of the bounds of databases compiled the β-sheets. These structures are consistent with overestimation of the interaction energies. For the cyclohexanes, these functionals overestimate the stabilities of the axial conformation, especially when used with smaller basis sets. Their performance improves when the basis set is improved from D95?? to aug-cc-pVTZ (which would not be possible with systems as large as the peptides).  相似文献   

19.
光系统Ⅱ中磷脂的缺失对其功能和结构的影响   总被引:3,自引:0,他引:3  
运用酶学方法探讨了光系统Ⅱ(PSⅡ)中磷脂酰甘油(PG)的作用。研究表明,在PSⅡ的放氧复合物附近可能存在着PG的作用区。PG的缺失导致PSⅡ放氧活性的降低,影响PSⅡ蛋白质的空间结构,具体表现为蛋白质二级结构中α-螺旋和转解结构的减少能及β-折叠结构的增加;同时酷氨酯残基中酚环的构象和微极性发生了改变。  相似文献   

20.
In this study, the thermodynamic functions of hydrogen abstraction from the C(α) and amide nitrogen of Gly(3) in a homo-pentapeptide (N-Ac-GGGGG-NH(2); G5) by HO(●), HO(2)(●), and O(2)(-●) were computed using the Becke three-parameter Lee-Yang-Parr (B3LYP) density functional. The thermodynamic functions, standard enthalpy (ΔH°), Gibbs free energy (ΔG°), and entropy (ΔS°), of these reactions were computed with G5 in the 3(10)-helical (G5(Hel)) and fully-extended (G5(Ext)) conformations at the B3LYP/6-31G(d) and B3LYP/6-311+G(d,p) levels of theory, both in the gas phase and using the conductor-like polarizable continuum model implicit water model. H abstraction is more favorable at the C(α) than at the amide nitrogen. The secondary structure of G5 affects the bond dissociation energy of the H-C(α), but has a negligible effect on the dissociation energy of the H-N bond. The HO(●) radical is the strongest hydrogen abstractor, followed by HO(2)(●), and finally O(2)(-●). The secondary structure elements, such as H-bonds in the 3(10)-helix, protect the peptide from radical attack by disabling the potential electron delocalization at the C(α), which is possible when G5 is in the extended conformation. The unfolding of the peptide radicals is more favorable than the unfolding of G5(Hel); however, only the HO(●) can initiate the unfolding of G5(Hel) and the formation of G5(Ext)(●). These results are relevant to peptides that are prone to undergoing transitions from helical structures to β-sheets in the cellular condition known as "oxidative stress" and the results are discussed in this context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号