首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
胡茜  田冲  Borzov Maxim  聂万丽 《化学学报》2015,73(10):1025-1030
近年来, 受限路易斯酸碱对(FLPs: Frustrated Lewis Pairs)在小分子的活化以及在催化还原等方面所表现出的独特反应特性, 使得有关FLPs化学的研究受到了国内外广泛的关注. 设计了一种新型的FLPs催化体系, 该体系以三(五氟苯基)硼(BCF)为路易斯酸, 以多种不同取代的有机胺盐酸盐替代常规FLPs中的路易斯碱有机胺. 发现利用该体系与氢化硅烷反应, 不仅可以高产率地制备分离得到相应的伯、仲、叔硼氢化胺盐; 而且还可以这一体系作为催化剂, 以氢化硅烷作为还原剂, 在常温常压下可高选择性地部分或彻底还原大部分含羰基官能团醛酮等有机化合物. 由BCF/2,2,6,6-四甲基哌啶(TMP)盐酸盐组成的催化体系在对CO2催化还原为甲烷的反应中, 亦较相应的BCF/TMP体系显示更高的活性. 还通过核磁共振详细地对比研究了原料有机胺盐酸盐、中间体氯代硼胺盐以及产物氢化硼胺盐中, 胺基氮上质子的核磁共振谱信息, 发现不仅胺基上取代基的位阻效应会影响到具有电四极矩性的14N磁性核的弛豫效应, 而且阴离子基团的配位强弱对胺基氮上质子的化学位移也会产生较大的影响.  相似文献   

2.
近年来有关受限路易斯酸碱对(FLPs)化学的研究受到了国内外的广泛关注,但有关芳香胺类FLPs的应用研究却极少涉及.本工作以硅烷作为还原剂,路易斯酸三(五氟苯基)硼(BCF)作为催化剂,用芳香胺盐酸盐代替苯胺,可一步反应实现炔烃与苯胺的催化氢胺化还原反应.研究发现,取代基较多的三乙基硅烷在反应中表现出较高的反应活性,吸电子取代基取代的端基芳炔的转化率也较给电子取代基取代的端基芳炔的转化率高.对催化反应的机理研究表明,胺盐与B(C6F53及硅烷反应所生成的硼氢化芳胺盐活性中间体"[Ar2NH2]+[H-B(C6F53]-"的产生和分解速度决定着中间产物亚胺的生成和还原.  相似文献   

3.
一直以来寻找直接有效的乙烯基官能化合成方法的研究备受关注. 报道了一种新型的有机胺盐酸盐/B(C6F5)3 (BCF)体系催化炔烃与氢氯酸或羧酸的加成反应方法, 可选择性地在炔烃的C(2)位氯代或羧化. 研究了在有机胺盐酸盐/BCF体系催化下, 不同取代的炔烃与无机酸HCl的氢氯化加成反应. 在2,2,4,4-四甲基哌啶盐酸盐/BCF([TMPH]+[Cl-B(C6F5)3]-)催化下, 等物质的量的炔烃和HCl反应时, 端基芳炔的C(2)位一加成产物的比例可高达90%以上, 而端基烷基炔烃的选择性较芳炔差, 叔丁基乙炔的一加成产物只占到67%. 报道了非金属催化剂路易斯酸BCF催化的炔烃与羧酸CF3COOH的烯醇酯化反应, 端基芳炔的C(2)位烯醇酯化产率可达95%以上, 而二苯基乙炔及非芳香性端基炔的反应活性较低. 首次实现了非金属催化剂FLPs参与催化的炔烃与酸的选择性氢氯化和烯醇酯化加成反应.  相似文献   

4.
对不同的路易斯碱、 不同取代的氢化硅烷以及不同结构的烯胺进行了研究. 结果表明, 无论在何种光照条件下, 硅氢化反应都不是主要反应; 根据用氘代硅烷试剂对反应机理进行相应的同位素效应研究结果推测, 反应按照自由基机理进行的可能性最为合理. 本文研究结果对探索受限路易斯酸碱对(FLPs)体系的催化方式及进一步拓宽其应用领域具有重要意义.  相似文献   

5.
炔烃的立体选择性硼氢化加成反应是有机合成中重要的反应之一.在硅烷的存在下,有机胺盐酸盐/硼烷体系可与炔烃在温和的反应条件下发生计量的加成反应.该反应不仅可高立体选择性地得到Z-式构型的1,2-硼氢化胺盐加成产物,而且反应产率高,产物易于分离提纯.对有机胺盐酸盐/硼烷体系与炔烃的加成反应机理进行的研究表明,胺盐与B(C6F53及硅烷反应所生成的硼氢化胺盐"[R2NH2]+[H-B(C6F53]-",虽然被认为是受限路易斯酸碱对化学的活性中间体,但其本身并不能直接还原炔烃;炔烃必须首先被催化量的路易斯酸B(C6F53活化后才可与[H-B(C6F53]-加成.同时,胺盐氯阴离子Cl-与路易斯酸B(C6F53之间的弱的相互作用直接决定着产物的立体选择性,[H-B(C6F53]-以反式加成的方式进攻活化后的炔烃最终得到Z-式构型的硼氢化加成产物.  相似文献   

6.
钯催化卤代芳烃的胺化反应研究   总被引:8,自引:0,他引:8  
钯催化卤代芳烃胺化是形成Car-N的重要方法.配体的发展扩展了底物的适用范围, 提高了反应的选择性,实现了廉价易得的氯代芳烃的胺化,弱碱的使用提高了官能团的兼 容性,因此Pd催化芳胺化广泛应用于合成芳胺类化合物.本文以卤代芳烃为线索,对钯催化偶联胺化反应的研究进展进行了综述和展望.  相似文献   

7.
近年路易斯酸B(C6F53催化的醛酮还原及胺化反应研究表明,缺电子的路易斯酸B(C6F53也可以作为一种"耐水"的催化剂在"有水"条件下进行催化反应.这些研究成果对进一步扩展受限路易斯酸碱对(FLPs)化学的研究领域和应用前景提供了更多可能.本文以硅烷作为还原剂,在路易斯酸B(C6F53催化下可在温和条件下实现醛与烷基羟胺类化合物的直接还原胺化反应,并且在还原过程中N-O键不会发生断裂,可中等至高产率地制备各种烷氧基取代的羟胺衍生物.对反应机理研究发现,在中性条件下苯甲醛与苄氧基羟胺的反应仅得到缩合中间产物肟醚,而在HCl或过量H2O的参与下苯甲醛与苄氧基羟胺的直接还原胺化均可顺利进行;对反应机理的研究表明苄氧基羟胺会与路易斯酸硼烷在过量H2O的参与下发生质子化,在硅烷的作用下转化成具有一定还原性的"硼氢化胺盐"活性中间体并进而促使中间产物肟醚的还原.对醛与羟胺的直接还原胺化反应研究表明,在"有水"条件下路易斯酸B(C6F53不仅仅是一种"耐水"的催化剂,在某些反应中水可能直接影响着催化反应,尤其是对醛酮的直接还原胺化反应.因此,继续深入研究有"水"条件下路易斯酸硼烷参与的催化反应机理不仅对FLPs化学的发展至关重要,对其他相应催化体系的研究也具有重要的参考价值.  相似文献   

8.
碱土金属及其化合物由于其储量丰富、成本低而被应用于催化反应中.近年来,碱土金属催化脱氢偶联反应、硼氢化反应、氢膦化反应、氢胺化反应以及氢化硅烷化反应等被关注和研究,无论在实验还是原理上都取得了大量的进展.针对这类反应及其机理进行总结归纳,从而完整描绘了碱土金属在氢化或脱氢反应中起到的作用.这类反应中,往往都涉及到碱土金属氢化物作为活性物种,反应过程中都要经历碱土金属氢共价键的形成和断裂.通过对这些反应的分类和讨论,从整体上认识了这类反应的反应条件和反应历程,为今后设计碱土金属催化剂和同类型反应的催化循环提供了指导.  相似文献   

9.
芳基氟化物和氯化物结构稳定、种类繁多、价格相对溴化物和碘化物更为廉价,应用较为广泛.目前该类化合物的应用已经造成了严重的环境问题.研究发现将碳卤键转化为碳氢键能够增强该类物质的可降解性.所以氟代、氯代芳香化合物氢化脱卤反应对环境保护具有重要的意义.本文主要讲述了芳基氟化物和氯化物的氢化还原反应,简述了氟代、氯代芳香化合物氢化脱卤反应研究的现状,强调了不同形式的金属和非金属催化剂对氟代和氯代芳香化合物的脱卤素作用.同时也描述了一些新的脱卤素方法,如:电催化脱卤素和光催化脱卤素方法.  相似文献   

10.
芳香硝基物CO选择还原—环境友好芳胺合成新路线   总被引:1,自引:0,他引:1  
含有羰基、氯、氰基和双键的芳胺类化合物是染料、颜料、医药和农药等领域的重要中间体[1].然而,它们难以从相应的芳香硝基物与金属氢化物试剂的催化加氢直接制得,因为在这些还原条件下,羰基、氯、氰基和双键也能发生还原反应[2] .目前,工业上通常还只能用经典的铁粉还原法或硫化碱还原法生产这些芳胺衍生物,但用铁粉还原法,产生的大量铁泥严重污染环境;硫化碱还原法,则存在合成路线复杂、成本高、收率低和废液量大等不足之处[3] .近年来,一种以CO为还原剂还原芳香硝基物的反应,以其对硝基的高选择性而日益引起人们的兴趣,因而有望成为合成含有羰基、氯和氰基的芳香胺类衍生物的一条环境友好新途径[4].  相似文献   

11.
1,4-Dichlorobenzene(cyclopentadienyl)iron(II) hexafluorophosphate reacts with the carbanion derived from 3-ethoxy-6-methylpyridazine N-oxide to give a Yanovsky-type adduct.  相似文献   

12.
13.
14.
15.
16.
1.  The potential of the interaction of two similar atoms of a noble gas can be represented in the form of a Buckingham potential for which the principle of corresponding states is satisfied, one of the manifestations of this being the constancy of the complex C8/(R2C6) for different gases.
2.  In accordance to the principle of corresponding states the coefficient C8 in the Buckingham potential for adsorption interactions is 6 times greater than the value adopted at the present time in the theory of physical adsorption.
3.  In order to accelerate the calculation of the lattice sums in various calculations on the zeolites and other adsorbents it is possible to calculate the lattice sum by the usual method at reference points and write the result in the memory of a computer and in all the subsequent calculations to find the value of the lattice sum at a given point by interpolation. With an accuracy of 0.5% this method leads to an acceleration of the calculation by a factor of 2.103.
  相似文献   

17.
18.
近年来, Fenton反应由于其成本低,反应速度快,操作简单等优势受到了广泛的研究.传统的均相Fenton反应可通过H2O2氧化Fe2+产生具有强氧化性的羟基自由基,用于处理难降解的有机物.然而, Fenton反应存在两个主要问题,首先,在Fenton反应中需要加入大量的酸来维持酸性环境,以保证反应的最佳活性.其次, Fenton反应中铁离子不断流失并形成固体污泥,这严重影响了Fenton反应产生·OH的效率.目前,将光催化反应与非均相芬顿反应相结合是改善这些问题的有效方案.非均相光芬顿反应不仅能提高有机物降解的活性,而且通过光催化剂导带上的电子有效减少Fe3+的浸出和铁氢氧化物沉淀的产生.最近,作为一种可见光Fenton催化剂,α-Fe2O3可以在几乎中性的条件下发生光芬顿反应,这解决了在反应过程中需要随时调整PH值的问题.此外,光照条件下α-Fe2O3价带上的电子能跃迁至导带并将Fe3+还原成Fe2+,从而减少铁离子的损耗.然而,由于光生载流子复合率较高等问题,单一α-Fe2O3光催化剂的催化活性仍不理想.构建具有2D/2D结构的S型异质结可以缩短电子在界面间的传输距离,增大材料的活性位点,将光生电子-空穴在空间上分离,从而有效增强光生载流子的分离效率.因此,构建2D/2Dα-Fe2O3/Bi2WO6 S型异质结,并用于光芬顿反应有望进一步提高对有机污染物的降解效率.本文通过简易的水热法制备了具有2D/2D结构的α-Fe2O3/Bi2WO6 S型异质结光芬顿催化剂,并通过XRD、BET、TEM、XPS和UV-Vis等手段对催化剂的晶体结构、元素状态、微观结构、光学性质和化学组分进行了表征.通过在可见光照射下降解甲基蓝(MB),考察了α-Fe2O3/Bi2WO6的光芬顿催化活性.结果表明,由于光催化反应与Fenton反应的协同作用,α-Fe2O3/Bi2WO6表现出了明显增强的光-Fenton催化活性,最佳比例的α-Fe2O3/Bi2WO6的活性分别是单一α-Fe2O3和Bi2WO6的11.06倍和3.29倍.本文将光催化反应与Fenton反应相结合,一方面,光催化反应对Fe3+的还原有促进作用,提高了Fe2+的浓度,从而提升羟基自由基的产量;另一方面, Fenton反应对α-Fe2O3/Bi2WO6中电子的利用阻止了光生载流子的复合,进一步提高了光催化降解效率.此外,由于二维纳米片之间具有更大的接触面积, 2D/2D异质结可以缩短电荷传输时间和距离,促进了光生电子-空穴的分离.同时,具有较大比表面积的2D/2D材料可以在催化剂表面提供大量用于有机物氧化分解的活性位点.而S型异质结的构建不但促进了界面电荷的转移和分离,还能维持最佳的电荷氧化还原电位,这都提升了催化剂的光芬顿催化活性.总之,本文为合成可高效降解有机污染物的非均相光-芬顿催化剂提供了新的思路.  相似文献   

19.
A macrocycle composed of six cavitands was assembled into a tris-capsule and a tris-carceplex, each of which encapsulates three guest molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号