首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
A closed-loop adaptive optics system based on a self-referencing interferometer wavefront sensor (SRI WFS) using phase-shifting point-diffraction technique and an electrically addressed phase-only liquid-crystal spatial light modulator (LC SLM) is built and validated experimentally. The wavefront aberration of incoming beam is directly measured by analyzing four frames phase-shifted interferograms captured by a single CCD camera in two camera shots, and then by loading the conjugate function onto the SLM the wavefront aberration is corrected. The proposed scheme does not rely on any complicated control algorithm or wavefront-reconstruction algorithm and can achieve high-resolution and high-accuracy correction. Closed-loop correction results of single order Zernike aberrations and a Kolmogorov turbulence phase screen show that considerable improvements in the Strehl ratio (of greater than 0.94) is achieved.  相似文献   

2.
侯静  姜文汉  凌宁 《光学学报》2004,24(1):31-136
研究了在CP/CM系统中,两个哈特曼—夏克波前传感器用于控制一套波前校正器件的几种数据融合方法,通过复原矩阵的条件数分析了斜率数据向量的扰动和复原矩阵的扰动对系统控制电压的影响,得到了相应的公式。实现了CP/CM自适应光学闭环实验,并且利用实际系统比较了几种数据融合方法,认为现有工程技术条件下,加修正因子斜率融合和电压融合是可行的办法,二者在控制电压的得到上是等价的,不同之处将表现在波前处理机。  相似文献   

3.
杨平  许冰  姜文汉  陈善球 《光学学报》2007,27(9):1628-1632
为了校正激光光束的波前像差,建立了一套无需直接探测波前信息的自适应光学(AO)系统模型,提出了一种基于实数编码的高斯变异的遗传算法(GA)用来控制61单元压电变形镜补偿波前像差,并仿真利用此算法控制61单元变形镜校正由变形镜本身产生的像差。结果表明,这种算法能够找到补偿各种像差所需的变形镜的最优面型。像差校正后,焦平面的峰值光强最多能够提高30倍。环围斯特尔比值(Strehl ratio)最多能够从校正前的0.032提高到0.96,变形镜61个驱动器后的电压值收敛性能良好。  相似文献   

4.
纯相位液晶空间光调制器拟合泽尼克像差性能分析   总被引:2,自引:0,他引:2       下载免费PDF全文
蔡冬梅  凌宁  姜文汉 《物理学报》2008,57(2):897-903
纯相位液晶空间光调制器作为波前校正器构成的高分辨率、低能耗、价格低廉、易于控制的自适应光学系统受到越来越多的关注.作为一种新型波前校正器件,它对波前像差的校正能力是反映其在自适应光学系统中应用的一个重要的指标,因此有必要仔细地研究它对各种像差的校正能力,以确定其可能的应用范围.波前校正器对各阶泽尼克像差的拟合效果有效地反映了该器件对不同像差的校正能力.利用256×256像素的纯相位液晶空间光调制器(LC-SLM)产生不同系数的前36项泽尼克像差分析LC-SLM对不同像差的校正能力.讨论了填充因子、离散像素 关键词: 液晶空间光调制器 相位调制 自适应光学 泽尼克多项式  相似文献   

5.
李岩  李林  黄一帆  杜保林 《中国物理 B》2009,18(7):2769-2773
This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme. Communication between MATLAB and Code V is established via ActiveX technique in computer simulation. The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror. After comparison of performance of the corrected system with the baseline system, AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.  相似文献   

6.
Lee H 《Optics letters》2011,36(8):1503-1505
A new concept of using focus-diverse point spread functions (PSFs) for modal wavefront sensing (WFS) is explored. This concept is based on relatively straightforward image moment analysis of measured PSFs, which differentiates it from other focal-plane WFS techniques. The presented geometric analysis shows that the image moments are nonlinear functions of wave aberration coefficients but notes that focus diversity essentially decouples the coefficients of interest from others, resulting in a set of linear equations whose solution corresponds to modal coefficient estimates. The presented proof-of-concept simulations suggest the potential of the concept in WFS with strongly aberrated high signal-to-noise ratio objects in particular.  相似文献   

7.
The induced optical aberration of laser beam passing through a transparent flowing fluid layer on a metal specimen is experimentally and empirical formula studied. The proposed study presents an experimental investigation of metal surface roughness measurement by combining an optical probe of laser-scattering phenomena and adaptive optics (AO) for aberration correction. In the absence of the AO correction scheme, induced flow velocity of 0.278 m/s can severely degrade the residual wavefront root mean square (RMS) error to 0.58 μm and decrease the scattered laser intensity. Real-time AO correction in closed-loop at a sampling rate of 8Hz can reduce the wavefront RMS error to 0.19 μm and improve the attenuation of scattered laser intensity. The maximum relative error of the estimated roughness (R a) is less than 7.8% compared with the stylus method. The experimental results show satisfactory correction in the presence of a flowing fluid layer using the AO system.  相似文献   

8.
基于线性相位反演技术的自适应光学闭环实验研究   总被引:1,自引:1,他引:0  
陈波  李敏  李新阳  姜文汉 《光学学报》2008,29(9):1633-1637
利用成像光学系统、变形镜、装有图像采集卡和D/A卡的PC机等建立了一套基于线性相位反演技术的自适应光学闭环实验系统.在Windows操作系统下用VC完成图像处理和控制算法.利用一台高测量精度的哈特曼传感器测量波前信息并评价自适应光学系统的校正效果.在不同像差大小状态下研究了这种基于线性相位反演技术的自适应光学系统的像差校正能力.收敛速度,稳定性等.实验结果表明,基于线性相位反演技术的自适应光学系统对静态小像差有较好的校正效果.  相似文献   

9.
Aberrations of self-imaged patterns with two-dimensional periodicity   总被引:1,自引:1,他引:0  
Soo Chang   《Optik》2006,117(6):287-295
We develop a geometrical theory of aberration in the self-imaged patterns with two-dimensional periodicity. The patterns are considered to be a crossed-line grating or a periodic array of finite apertures. We first derive the raytracing equations for determining the optical path of a self-imaging ray. We then find the third- and fifth-order contributions to the wavefront aberration which arise from the difference between the optical paths of a self-imaging ray and of an actual ray. We also derive the expression of the ray aberration from the wavefront aberration. The ray aberration is classified into five distinct types by analogy with the cases in a refracting lens system. We show that the overall ray aberration is entirely undercorrected and the aberrated image patch is decentered from an ideal image point in the direction parallel to the direction tangent vector of a chief ray. The image evaluation technique discussed here will be useful in various applications related to self-image formation of two-dimensionally periodic patterns.  相似文献   

10.
 分析了Shack-Hartmann 波前传感器(S-H WFS)在实际大气条件下,大气湍流波前相位的探测误差在自适应光学系统(AOS)中的传递过程以及最后的控制残余方差,导出了定量分析的数学模型,并给出了分析结果。结果表明,当S-H WFS用于微弱信标光大气湍流的探测时,自适应光学系统中的控制斜率残余误差中除了前人分析[1]的误差外还包含一项由天空背景光斑质心位置引起的常数误差值,并且系统的有效控制带宽会因信标探测对比度的下降而减小,这将大大降低AOS的校正能力。分析结果还表明信标光越弱,对S-H WFS的标定光学系统的像差要求越高。  相似文献   

11.
Zhang Y  Poonja S  Roorda A 《Optics letters》2006,31(9):1268-1270
We have developed a compact, robust adaptive optics (AO) scanning laser ophthalmoscope using a microelectromechanical (MEMS) deformable mirror (DM). Facilitated with a Shack-Hartmann wavefront sensor, the MEMS-DM-based AO operates a closed-loop modal wave aberration correction for the human eye and reduces wave aberrations in most eyes to below 0.1 microm rms. Lateral resolution is enhanced, and images reveal a clear cone mosaic near the foveal center. The significant increase in throughput allows for a confocal pinhole whose diameter is less than the Airy disc of the collection lens, thereby fully exploiting the axial resolution capabilities of the system.  相似文献   

12.
分析了Shack-Hartmann 波前传感器(S-H WFS)在实际大气条件下,大气湍流波前相位的探测误差在自适应光学系统(AOS)中的传递过程以及最后的控制残余方差,导出了定量分析的数学模型,并给出了分析结果。结果表明,当S-H WFS用于微弱信标光大气湍流的探测时,自适应光学系统中的控制斜率残余误差中除了前人分析[1]的误差外还包含一项由天空背景光斑质心位置引起的常数误差值,并且系统的有效控制带宽会因信标探测对比度的下降而减小,这将大大降低AOS的校正能力。分析结果还表明信标光越弱,对S-H WFS的标定光学系统的像差要求越高。  相似文献   

13.
利用相位差异技术校准非共光路静态像差   总被引:1,自引:0,他引:1  
提出了一种用相位差异(PD)技术对自适应光学(AO)系统的非共光路静态像差进行校准的方法。相位差异技术通过采集焦面和离焦面的单帧或多帧短曝光图像来估算波前相位畸变,同时对目标图像进行恢复。在闭环工作条件下,自适应光学系统利用相位差异算法在线检测成像光路的静态像差,并将得到的像差系数转化为变形镜的初始化面形,从而补偿非共光路的静态像差。实验结果表明,校准后的成像质量显著提高,目标半峰全宽降低了约14%,系统残差降低了约72%。成像光路在线检测得到的系统残差与闭环回路实测残差的水平趋于一致,证实了相位差异技术应用于光学检测的能力。该方法具有在无需改变原有自适应光路以及高信噪比条件下便可精确解算系统像差的优点,是大口径光电成像系统较为理想的光学检测技术之一。  相似文献   

14.
When the defocus cannot be measured and the wavefront solution set is restricted by a multi-channel, some practical problems exist in the calibration of the noncommon path aberrations of the adaptive optics system. To solve these problems, an evaluation function of phase diversity algorithm is constructed in this paper. We use the method that the estimated aberration and the modulated deformable mirror iterate each other to make up the nonideal measurement environment. Then the ill-pose problem of the solution by phase diversity, produced as relaxing constraints of the diversity defocus on the wavefront solution set, is solved. We have adopted the proposed method to measure the noncommon path aberrations of the adaptive optics system on a 1.23 m telescope. Experimental results demonstrate that wavefront solution is more accurate and the whole imaging quality is improved effectively by using the deformable mirror to compensate the aberration measured.  相似文献   

15.
We present a compact optical design for a multireference Shack-Hartmann-based wavefront sensor (WFS) for multiconjugate adaptive optical systems. The key component of this WFS design is a field lenslet array that separates the exit pupil images in the sensing plane for all reference sources. An analytical method for WFS optical design is presented, and the optimal strategy for selecting optical components from a discrete set is outlined. The feasibility of the WFS design has been demonstrated for a prototype WFS system in a laboratory setup with five reference sources and two deformable mirrors representing a wavefront-distorting medium.  相似文献   

16.
High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device(EMCCD) applied in the Shack–Hartmann wavefront sensor(S–H WFS) in adaptive optics(AO).However,when the brightness of the target changes in a large scale,the fixed electron multiplying(EM) gain will not be suited to the sensing limitation.Therefore an auto-gain-control method based on the brightness of light-spots array in S–H WFS is proposed in this paper.The control value is the average of the maximum signals of every light spot in an array,which has been demonstrated to be kept stable even under the influence of some noise and turbulence,and sensitive enough to the change of target brightness.A goal value is needed in the control process and it is predetermined based on the characters of EMCCD.Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust,the sensing SNR reaches the maximum for the corresponding signal level,and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band.  相似文献   

17.
We have developed an adaptive optics (AO) fundus camera to obtain high resolution retinal images of eyes. We use a liquid crystal phase modulator to compensate the aberrations of the eye for better resolution and better contrast in the images. The liquid crystal phase modulator has a wider dynamic range to compensate aberrations than most mechanical deformable mirrors and its linear phase generation makes it easy to follow eye movements. The wavefront aberration was measured in real time with a sampling rate of 10 Hz and the closed loop system was operated at around 2 Hz. We developed software tools to align consecutively obtained images. From our experiments with three eyes, the aberrations of normal eyes were reduced to less than 0.1 μm (RMS) in less than three seconds by the liquid crystal phase modulator. We confirmed that this method was adequate for measuring eyes with large aberrations including keratoconic eyes. Finally, using the liquid crystal phase modulator, high resolution images of retinas could be obtained.  相似文献   

18.
自适应光学系统的数值模拟:直接斜率控制法   总被引:9,自引:6,他引:3  
严海星  张德良 《光学学报》1997,17(6):58-765
采用直接斜率控制法完整地实现了对自适应光学(AO)系统的数值模拟,系统研究了带自适应光学校正的激光大气传输规律。提出了对计算出的位相进行了“剪接”的办法,解决了残余位相方差与自适应光学的校正效果没有对应关系的问题。证明可以把快速傅里叶变换法(FFT)用于透镜成像的聚焦计算,与积分法得到相同的结果,报道了对于一定的延迟时间,当大气横向风速大于一个阈值时,自适应光学补偿比安全相位补偿的效果还要好,表明  相似文献   

19.
This paper proposes an integrated roughness measurement system that is based on adaptive optics (AO) and binary analysis of speckle pattern images. The aim of this study was to demonstrate the necessity for AO compensation in regions containing both heat and fluid flow turbulences. A speckle image was obtained by projecting a laser beam onto the specimen surface, and the laser pattern image reflected from the surface was binarized to experimentally correlate the intensity with the surface roughness. In the absence of the AO correction scheme, induced turbulences can severely increase the residual rms error from 0.14 to 1.4 μm. After a real-time closed-loop AO correction, we can reduce the wavefront root mean square (rms) error to 0.12 μm, which not only compensates for the aberration error from induced disturbances but also improves the overall performance of the optical system. In addition, an AO system having different gains was investigated, and a threshold gain value was found to be able to steadily compensate for the wavefront errors in less than 2 s. Measurement results of five steel samples having roughness ranging from 0.2 to 3.125 μm (0.3λ and 5λ, where λ is the diode laser wavelength) demonstrate an excellent correlation between the intensity distribution of binary images and average roughness with a correlation coefficient of 0.9982. Furthermore, the proposed AO-assisted system is in good agreement with the stylus method and less than 9.73% error values can be consistently obtained.  相似文献   

20.
A new kind of adaptive optics (AO) system, in which several low spatial frequency deformable mirrors(DMs) with optical conjugation relationship are combined to correct high-order aberrations, is proposed.The phase compensation principle and the control method of the combinational AO system are introduced.The numerical simulations for the AO system with two 60-element DMs are presented. The results indicate that the combinational DM in the AO system can correct different aberrations effectively as one single DM with more actuators, and there is no change of control method. This technique can be applied to a large telescope AO system to improve the spatial compensation capability for wavefront by using current DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号