首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi spin-echo sequences such as single-shot RARE are very sensitive to the initial phase of the transverse magnetization, and they can preserve only the transverse magnetization component which is aligned with the axis of the refocusing pulse rotation. Therefore, two separate single-shot RARE experiments with phases of refocusing pulses 90 degrees apart have to be run and their complex images summed to obtain an error-free phase map of the initial transverse magnetization. This is particularly useful when auxiliary phase encoding is integrated in the preparation period of the RARE sequence, such as when encoding flow, displacement, susceptibility, pH or temperature. In this paper, the two-shot RARE approach is verified first theoretically and then experimentally by demonstrating its application to rapid current density imaging (CDI). The sequence consists of the preparation period which triggers electric pulses in the sample followed by the RARE acquisition period. Electric currents through the sample induce a magnetic field change in the direction of the static magnetic field and a phase change of the initial magnetization proportional to it. To calculate one component of current density two orthogonal components of magnetic field change must be measured. In general, for 2D non-symmetrical samples, this can be done by rotating the sample to a perpendicular orientation. The proposed CDI method allows much for faster magnetic field change mapping than the standard spin-echo based CDI.  相似文献   

2.
The threshold character of ultra-short-pulse laser ablation allows the formation of sub-diffraction-limited structures. In order to achieve nanostructuring of an extended area in reasonable production times, parallel production is highly desirable. In this paper we analyze the results obtained by nanostructuring using a self-assembled microlens array formed by deposition of quartz spheres directly on a noble-metal surface or on a quartz spacer layer. The quartz spheres are removed by a single laser pulse, so the structures formed are the result of single-shot ablation. The size of the holes formed depends on the laser fluence and the thickness of the transparent spacer layer. The hole depths are significantly larger than the optical penetration depth, indicating that heat diffusion plays an important role. The results are analyzed by solving the two-temperature diffusion model numerically in one dimension. The results from the numerical simulation lead to the formulation of a simple analytical model for the ablation at high fluence, which reproduces the results of the simulation quite well and is in qualitative agreement with the experimental data. PACS 61.80.Ba; 78.47.+p; 81.16.Rf; 81.65.Cf  相似文献   

3.
高嵩  朱艳春  李硕  包尚联 《物理学报》2014,63(4):48704-048704
为了准确得到人体内水分子各向异性扩散信息,在核磁共振扩散张量成像及高角分辨率扩散成像实验中,需要在众多空间均匀分布的方向上依次施加扩散敏感梯度磁场,测量水分子在不同方向上的扩散系数.目前方向分布方案的缺点有方向数目不连续、均匀性有待提高及部分方向数据的损坏会影响整个数据集等.本文以广义Fibonacci数列为基础,提出新的可以产生连续方向数目的扩散敏感梯度磁场方向分布方案,整个方案的方向均匀性较好,数据集内的部分数据仍然具有很好的空间均匀性,而且本方案中相邻两个扩散敏感梯度磁场方向接近相反,可以减小快速变化的高强度梯度磁场产生的涡流对结果的影响.  相似文献   

4.
磁共振扩散张量成像可以定量无创研究人体内水分子在三维空间中的各向异性扩散规律,进而获取重要的病理及生理信息.为了得到水分子各向异性扩散信息,需要按照一定的方案依次施加不同方向的扩散敏感梯度磁场,测量水分子在这些方向上的扩散系数用以估算扩散张量.扩散张量成像测量结果的准确程度受梯度磁场方向分布方案的影响,本文对扩散敏感梯度磁场方向分布方案进行综述,包括完全随机方案、启发式方案、规则多面体式方案和数值优化方案等,分析这些方案的优势与局限性,并提出需进一步研究的问题.  相似文献   

5.
A very simple experimental setup, involving a single coil for generating a radiofrequency field gradient, enables one to determine the self-diffusion coefficient and the longitudinal relaxation time along the gradient axis. This is accomplished by a two-dimensional experiment involving three gradient pulses. The first part of the sequence includes two pulses of identical duration separated by an evolution interval which, by proper phase cycling, encodes longitudinal magnetization according to translational diffusion. The last pulse is incremented for purposes of spatial encoding.  相似文献   

6.
In this study, we investigated the use of a single-shot fast spin-echo-based sequence to perform diffusion tensor imaging (DTI) with improved anatomic fidelity through the entire brain and the cervical spine. Traditionally, diffusion tensor images have been acquired by single-shot echo-planar imaging (EPI) methods in which large distortions result from magnetic susceptibility effects, especially near air-tissue interfaces. These distortions can be problematic, especially in anterior and inferior portions of the brain, and they also can severely limit applications in the spine. At higher magnetic fields these magnetic susceptibility artifacts are increased. The single-shot fast spin-echo (SSFSE) method used in this study utilizes radiofrequency rephasing in the transverse plane and thus provides diffusion images with negligible distortion even at 3 Tesla. In addition, the SSFSE sequence does not require multiple fast-receivers, which are not available on many magnetic resonance (MR) systems. Phased array coils were used to increase the signal-to-noise ratio of the images, offering a major inherent advantage in diffusion tensor imaging of the spine and brain. The mean diffusion measurements obtained with the SSFSE acquisition were not statistically different (p > 0.05) from EPI-based acquisitions. Compared to routine T(2)-weighted MR images, the DTI-EPI sequence showed up to 20% in elongation of the brain in the anterior-posterior direction on a sagittal image due to magnetic susceptibility distortions, whereas in the DTI-SSFSE, the image distortions were negligible. The diffusion tensor SSFSE method was also able to assess diffusion abnormalities in a brain stem hemorrhage, unaffected by the spatial distortions that limited conventional EPI acquisition.  相似文献   

7.
By flipping the longitudinal magnetization with a chain of 180° pulses it is possible to effectively restore the effects of relaxation so that the same longitudinal magnetization is periodically recovered. The pulse sequence for achieving this, called Flipped LOngitudinal Polarization (FLOP), can be incorporated into any pulse sequence whenever it is desired to stop the attenuation in longitudinal magnetization caused by relaxation. We illustrate its use for fast, single-shot measurements of the longitudinal relaxation time and for three-dimensional T1 mapping.  相似文献   

8.
On a basis of extensive analytical and numerical studies we show that a linear-polarized microwave field creates a stationary magnetization in mesoscopic ballistic quantum dots with two-dimensional electron gas being at a thermal equilibrium. The magnetization is proportional to a number of electrons in a dot and to a microwave power. Microwave fields of moderate strength create in a one dot of few micron size a magnetization which is by few orders of magnitude larger than a magnetization produced by persistent currents. The effect is weakly dependent on temperature and can be observed with existing experimental techniques. The parallels between this effect and ratchets in asymmetric nanostructures are also discussed.  相似文献   

9.
In q-space diffusion NMR, the probability P(r,td) of a molecule having a displacement r in a diffusion time td is obtained under the assumption that the diffusion-encoding gradient g has an infinitesimal duration. However, this assumption may not always hold, particularly in human MRI where the diffusion-encoding gradient duration delta is typically of the same order of magnitude as the time offset Delta between encoding gradients. In this case, finite-delta effects complicate the interpretation of displacement probabilities measured in q-space MRI, and the form by which the signal intensity relates to them. By considering the displacement-specific dephasing, , of a set of spins accumulating a constant displacement vector r in the total time Delta+delta during which diffusion is encoded, the probability recovered by a finite-delta q-space experiment can be interpreted. It is shown theoretically that a data analysis using a modified q-space index q=gammadeltaetag, with gamma the gyromagnetic ratio and eta=square root (Delta-delta/3)/(Delta+delta), recovers the correct displacement probability distribution if diffusion is multi-Gaussian free diffusion. With this analysis, we show that the displacement distribution P(r,texp) is measured at the experimental diffusion-encoding time texp=Delta+delta, and not at the reduced diffusion time tr=Delta-delta/3 as is generally assumed in the NMR and MRI literature. It is also shown that, by defining a probability P(y,Delta) that a time tdeltac then eta is not equal to square root (Delta-delta/3)/(Delta+delta) which implies that we can no longer obtain the correct displacement probability from the displacement distribution. In the case that /g/=18 mT/m and Delta-delta=5 ms, the parameter deltac in ms is given by "deltac=0.49a2+0.24" where a is the sphere's radius expressed in microm. Simulation of q-space restricted diffusion MRI experiments indicate that if eta=square root (Delta-delta/3)/(Delta+delta), the recovered displacement probability is always better than the Gaussian approximation, and the measured diffusion coefficient matches the diffusion coefficient at time texp=Delta+delta better than it matches the diffusion coefficient at time tr=Delta-delta/3. These results indicate that q-space MRI measurements of displacement probability distributions are theoretically possible in biological tissues using finite-duration diffusion-encoding gradients provided certain compartment size and diffusion encoding gradient duration constraints are met.  相似文献   

10.
Using a novel NMR scheme we observed persistence in 1D gas diffusion. Analytical approximations and numerical simulations have indicated that for an initially random array of spins undergoing diffusion, the probability p(t) that the average spin magnetization in a given region has not changed sign (i.e., "persists") up to time t follows a power law t(-straight theta), where straight theta depends on the dimensionality of the system. Using laser-polarized 129Xe gas, we prepared an initial "quasirandom" 1D array of spin magnetization and then monitored the ensemble's evolution due to diffusion using real-time NMR imaging. Our measurements are consistent with analytical and numerical predictions of straight theta approximately 0.12.  相似文献   

11.
An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting “hybrid” imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T2* effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T2 contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.  相似文献   

12.
This paper proposes an image encryption scheme based on logistic quantum chaos. Firstly, we use compressive sensing algorithms to compress plaintext images and quantum logistic and Hadamard matrix to generate the measurement matrix. Secondly, the improved flexible representation of the quantum images (FRQI) encoding method is utilized for encoding the compressed image. The pixel value scrambling operation of the encoded image is realized by rotating the qubit around the axis. Finally, the quantum pixel is encoded into the pixel value in the classical computer, and the bit-level diffusion and scrambling are performed on it. Numerical analysis and simulation results show that our proposed scheme has the large keyspace and strong key sensitivity. The proposed scheme can also resist standard attack methods such as differential attacks and statistical analysis.  相似文献   

13.
The accurate determination of absolute measures of diffusion anisotropy in vivo using single-shot, echo-planar imaging techniques requires the acquisition of a set of high signal-to-noise ratio, diffusion-weighted images that are free from eddy current induced image distortions. Such geometric distortions can be characterized and corrected in brain imaging data using magnification (M), translation (T), and shear (S) distortion parameters derived from separate water phantom calibration experiments. Here we examine the practicalities of using separate phantom calibration data to correct high b-value diffusion tensor imaging data by investigating the stability of these distortion parameters, and hence the eddy currents, with time. It is found that M, T, and S vary only slowly with time (i.e., on the order of weeks), so that calibration scans need not be performed after every patient examination. This not only minimises the scan time required to collect the calibration data, but also the computational time needed to characterize these eddy current induced distortions. Examples of how measurements of diffusion anisotropy are improved using this post-processing scheme are also presented.  相似文献   

14.
Diffusion-weighted echo-planar magnetic resonance imaging is potentially of great importance as a diagnostic imaging tool; however, the technique currently suffers a number of limitations, including the image distortion caused by the eddy current induced fields when the diffusion-weighting magnetic field gradient pulses are applied. The distortions cause mis-registration between images with different diffusion-weighting, that then results in artifacts in quantitative diffusion images. A method is presented to measure the magnetic fields generated from the eddy currents for each of three orthogonal gradient pulse vectors, and then to use these to ascertain the image distortion that occurs in subsequent diffusion-weighted images with arbitrary gradient pulse vector amplitude and direction, and image plane orientation. The image distortion can then be reversed. Both temporal and spatial dependence of the residual eddy current induced fields are included in the analysis. Image distortion was substantially reduced by the correction scheme, for arbitrary slice position and angulation. This method of correction is unaffected by the changes in image contrast that occur due to diffusion weighting, and does not need any additional scanning time during the patient scan. It is particularly suitable for use with single-shot echo planar imaging.  相似文献   

15.
Single-shot spatiotemporally encoded (SPEN) MRI is a novel fast imaging method capable of retaining the time efficiency of single-shot echo planar imaging (EPI) but with distortion artifacts significantly reduced. Akin to EPI, the phase inconsistencies between mismatched even and odd echoes also result in the so-called Nyquist ghosts. However, the characteristic of the SPEN signals provides the possibility of obtaining ghost-free images directly from even and odd echoes respectively, without acquiring additional reference scans. In this paper, a theoretical analysis of the Nyquist ghosts manifested in single-shot SPEN MRI is presented, a one-dimensional correction scheme is put forward capable of maintaining definition of image features without blurring when the phase inconsistency along SPEN encoding direction is negligible, and a technique is introduced for convenient and robust correction of data from multi-channel receiver coils. The effectiveness of the proposed processing pipeline is validated by a series of experiments conducted on simulation data, in vivo rats and healthy human brains. The robustness of the method is further verified by implementing distortion correction on ghost corrected data.  相似文献   

16.
We analyze the evolution of magnetization following any series of radiofrequency pulses in strongly inhomogeneous fields, with particular attention to diffusion and relaxation effects. When the inhomogeneity of the static magnetic field approaches or exceeds the strength of the RF field, the magnetization has contributions from different coherence pathways. The diffusion or relaxation induced decay of the signal amplitude is in general nonexponential, even if the sample has single relaxation times T(1), T(2) and a single diffusion coefficient D. In addition, the shape of the echo depends on diffusion and relaxation. It is possible to separate contributions from different coherence pathways by phase cycling of the RF pulses. The general analysis is tested on stray field measurements using two different pulse sequences. We find excellent agreement between measurements and calculations. The inversion recovery sequence is used to study the relaxation effects. We demonstrate two different approaches of data analysis to extract the relaxation time T(1). Finite pulse width effects on the timing of the echo formation are also studied. Diffusion effects are analyzed using the Carr--Purcell--Meiboom--Gill sequence. In a stray field of a constant gradient g, we find that unrestricted diffusion leads to nonexponential signal decay versus echo number N, but within experimental error the diffusion attenuation is still only a function of g(2)Dt(3)(E)N, where t(E) is the echo spacing.  相似文献   

17.
We propose a quantum secure direct communication scheme based on non-orthogonal entangled pairs and local measurement. In this scheme, we use eight non-orthogonal entangled pairs to act as quantum channels. Due to the non-orthogonality of the quantum channels, the present protocol can availably prohibit from all kinds of valid eavesdropping and acquire a secure quantum channel. By local measurement, the sender acquires a secret random sequence. The process of encoding on the random sequence is identical to the one in one-time-pad. So the present protocol is secure. Even for a highly lossy channel, our scheme is also valid. The scheme is feasible with present-day techniques.  相似文献   

18.
Parimal Ghosh  Sisir Kumar Garai 《Optik》2011,122(17):1544-1551
Data comparator is the integral part of arithmetic and logical unit of any electronic or optical data processor. Due to some inherent limitations of electronics it cannot be possible to obtain a super fast operation (over terahertz limit) from electronic comparators. Again wavelength encoding technique has been established as an excellent one over other existing optical data encoding techniques. Semiconductor optical amplifier (SOA) technologies have shown their strong potentiality of realizing many all-optical systems. In this communication the authors have proposed a new scheme of developing all-optical wavelength encoded n bit binary comparator exploiting the four-wave mixing, wavelength filtering, wavelength conversion and nonlinear polarization rotation capabilities property of nonlinear semiconductor optical amplifiers. The scheme can be used for comparing signed and unsigned optical binary data of any bit wide numbers as well. The comparator is especially suitable for use as a building block in a larger optical circuit, such as in an all optical telecommunications switch.  相似文献   

19.
Indirect magnetization transfer increases the observed nuclear Overhauser enhancement (NOE) between two protons in many cases, leading to an underestimation of target distances. Wider distance bounds are necessary to account for this error. However, this leads to a loss of information and may reduce the quality of the structures generated from the inter-proton distances. Although several methods for spin diffusion correction have been published, they are often not employed to derive distance restraints. This prompted us to write a user-friendly and CPU-efficient method to correct for spin diffusion that is fully integrated in our program ambiguous restraints for iterative assignment (ARIA). ARIA thus allows automated iterative NOE assignment and structure calculation with spin diffusion corrected distances. The method relies on numerical integration of the coupled differential equations which govern relaxation by matrix squaring and sparse matrix techniques. We derive a correction factor for the distance restraints from calculated NOE volumes and inter-proton distances. To evaluate the impact of our spin diffusion correction, we tested the new calibration process extensively with data from the Pleckstrin homology (PH) domain of Mus musculus beta-spectrin. By comparing structures refined with and without spin diffusion correction, we show that spin diffusion corrected distance restraints give rise to structures of higher quality (notably fewer NOE violations and a more regular Ramachandran map). Furthermore, spin diffusion correction permits the use of tighter error bounds which improves the distinction between signal and noise in an automated NOE assignment scheme.  相似文献   

20.
We present an efficient one-step scheme for a single spin measurement based on nuclear magnetic resonance (NMR) techniques. This scheme considerably reduces the time of operation using a spin star network where a target spin and an ancillary spin are coupled to a ring of N spins. As opposed to the proposal in [Phys. Rev. Lett. 97 (2006) 100501] using a cubic lattice crystal to achieve a cubic speedup, the distinct advantage of this scheme is that under ideal conditions it requires the application of only one step to create a system of N correlated spins. In the process of single spin measurement, the total macroscopic magnetization, the individual magnetization and the transfer fidelity are calculated analytically as simple cosine functions of time and the amplitude of irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号