首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Townsend RJ  Hill M  Harris NR  White NM 《Ultrasonics》2006,44(Z1):e467-e471
Within an acoustic standing wave particles experience acoustic radiation forces, a phenomenon which is exploited in particle or cell manipulation devices. When developing such devices, one-dimensional acoustic characteristics corresponding to the transducer(s) are typically of most importance and determine the primary radiation forces acting on the particles. However, radiation forces have also been observed to act in the lateral direction, perpendicular to the primary radiation force, forming striated patterns. These lateral forces are due to lateral variations in the acoustic field influenced by the geometry and materials used in the resonator. The ability to control them would present an advantage where their effect is either detrimental or beneficial to the particle manipulation process. The two-dimensional characteristics of an ultrasonic separator device have been modelled within a finite element analysis (FEA) package. The fluid chamber of the device, within which the standing wave is produced, has a width to height ratio of approximately 30:1 and it is across the height that a half-wavelength standing wave is produced to control particle movement. Two-dimensional modal analyses have calculated resonant frequencies which agree well with both the one-dimensional modelling of the device and experimentally measured frequencies. However, these two-dimensional analyses also reveal that these modes exhibit distinctive periodic variations in the acoustic pressure field across the width of the fluid chamber. Such variations lead to lateral radiation forces forming particle bands (striations) and are indicative of enclosure modes. The striation spacings predicted by the FEA simulations for several modes compare well with those measured experimentally for the ultrasonic particle separator device. It is also shown that device geometry and materials control enclosure modes and therefore the strength and characteristics of lateral radiation forces, suggesting the potential use of FEA in designing for the control of enclosure modes in similar particle manipulator devices.  相似文献   

2.
Modelling of particle paths passing through an ultrasonic standing wave   总被引:3,自引:0,他引:3  
Townsend RJ  Hill M  Harris NR  White NM 《Ultrasonics》2004,42(1-9):319-324
Within an ultrasonic standing wave particles experience acoustic radiation forces causing agglomeration at the nodal planes of the wave. The technique can be used to agglomerate, suspend, or manipulate particles within a flow. To control agglomeration rate it is important to balance forces on the particles and, in the case where a fluid/particle mix flows across the applied acoustic field, it is also necessary to optimise fluid flow rate. To investigate the acoustic and fluid forces in such a system a particle model has been developed, extending an earlier model used to characterise the 1-dimensional field in a layered resonator. In order to simulate fluid drag forces, CFD software has been used to determine the velocity profile of the fluid/particle mix passing through the acoustic device. The profile is then incorporated into a MATLAB model. Based on particle force components, a numerical approach has been used to determine particle paths. Using particle coordinates, both particle concentration across the fluid channel and concentration through multiple outlets are calculated. Such an approach has been used to analyse the operation of a microfluidic flow-through separator, which uses a half wavelength standing wave across the main channel of the device. This causes particles to converge near the axial plane of the channel, delivering high and low particle concentrated flow through two outlets, respectively. By extending the model to analyse particle separation over a frequency range, it is possible to identify the resonant frequencies of the device and associated separation performance. This approach will also be used to improve the geometric design of the microengineered fluid channels, where the particle model can determine the limiting fluid flow rate for separation to occur, the value of which is then applied to a CFD model of the device geometry.  相似文献   

3.
Oberti S  Neild A  Möller D  Dual J 《Ultrasonics》2008,48(6-7):529-536
The use of acoustic radiation forces for the manipulation and positioning of micrometer sized particles has shown to be a promising approach. Resonant excitation of a system containing a particle laden fluid filled cavity, can (depending on the mode excited) result in positioning of the particles in parallel lines (1-D) or distinct clumps in a grid formation (2-D) due to the high amplitude standing pressure fields that arise in the fluid. In a broader context, the alignment of particles using acoustic forces can be used to assist manipulation processes which utilise an external mechanical tool, for instance a microgripper. In such a system, particles can be removed sequentially from a line formed by acoustic forces within a microfluidic channel, hence allowing a degree of automation. In order to fully automate the gripping process, the particles must be confined to a repeatable and accurate location in two dimensions (assuming that in the third dimension they sit on the lower surface of the channel). Only in this way it is possible to remove subsequent particles by simply bringing the gripper to a known location and activating its fingers. This combined use of acoustic forces and mechanical gripping requires that one extremity of the channel is open. However, the presence of the liquid-air interface which occurs at this opening, causes the standing pressure field to decay to zero towards the opening. In a volume of liquid in proximity to the interface positioning of particles by acoustic forces is therefore no longer possible. In addition, the longitudinal gradient of the field can cause a drift of particles towards the longitudinal center of the channel at some frequencies, undesirably moving them further away from the interface, and so further from the gripper. As a solution the use of microfluidic flow induced drag forces in addition to the acoustic force potential has been investigated.  相似文献   

4.
Acoustic radiation forces offer a means of manipulating particles within a fluid. Much interest in recent years has focussed on the use of radiation forces in microfluidic (or “lab on a chip”) devices. Such devices are well matched to the use of ultrasonic standing waves in which the resonant dimensions of the chamber are smaller than the ultrasonic wavelength in use. However, such devices have typically been limited to moving particles to one or two predetermined planes, whose positions are determined by acoustic pressure nodes/anti-nodes set up in the ultrasonic standing wave. In most cases devices have been designed to move particles to either the centre or (more recently) the side of a flow channel using ultrasonic frequencies that produce a half or quarter wavelength over the channel, respectively.It is demonstrated here that by rapidly switching back and forth between half and quarter wavelength frequencies - mode-switching - a new agglomeration position is established that permits beads to be brought to any arbitrary point between the half and quarter-wave nodes. This new agglomeration position is effectively a position of stable equilibrium. This has many potential applications, particularly in cell sorting and manipulation. It should also enable precise control of agglomeration position to be maintained regardless of manufacturing tolerances, temperature variations, fluid medium characteristics and particle concentration.  相似文献   

5.
Neild A  Oberti S  Haake A  Dual J 《Ultrasonics》2006,44(Z1):e455-e460
The contactless movement of microparticles and cells to known locations within a fluid volume is of interest in the fields of microtechnology and life sciences. A device which can position such inhomogeneities suspended in a fluid at multiple locations is described and modeled. The device consists of a thin fluid layer contained in a channel etched into a silicon wafer. Waves are excited by a macro-piezoelectric plate with electrodes on the top and bottom surfaces and, as a result, waves propagate into the adjacent fluid. The result is a pressure field throughout the fluidic volume. When an inhomogeneity in a fluid is exposed to an ultrasonic field the acoustic radiation force results; this is found by integrating the pressure over the surface of the particle, retaining second order terms, and taking the time average. Thus, due to the presence of a pressure field in the fluid in which the particles are suspended, a force field is created. The particles are then collected at the locations of the force potential minima. In the device described here, the force field is used to position particles into lines. The locations of the particles are predicted by using a finite element model of the system. The experimental and modeling results, presented here, are in good agreement.  相似文献   

6.
A series of devices have been investigated which use acoustic radiation forces to concentrate micron sized particles. These multi-layered resonators use a quarter-wavelength resonance in order to position an acoustic pressure node close to the top surface of a fluid layer such that particles migrate towards this surface. As flow-through devices, it is then possible to collect a concentrate of particulates by drawing off the particle stream and separating it from the clarified fluid and so can operate continuously as opposed to batch processes such as centrifugation. The methods of construction are described which include a micro-fabricated, wet-etched device and a modular device fabricated using a micro-mill. These use silicon and macor, a machinable glass ceramic, as a carrier layer between the transducer and fluid channel, respectively. Simulations using an acoustic impedance transfer model are used to determine the influence of various design parameters on the acoustic energy density within the fluid layer and the nodal position. Concentration tests have shown up to 4.4-, 6.0- and 3.2-fold increases in concentration for 9, 3 and 1 microm diameter polystyrene particles, respectively. The effect of voltage and fluid flow rates on concentration performance is investigated and helps demonstrate the various factors which determine the increase in concentration possible.  相似文献   

7.
声操控微粒研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
蔡飞燕  孟龙  李飞  郑海荣 《应用声学》2018,37(5):655-663
声操控微粒是利用声波与微粒之间动量和能量交换产生的声辐射力操纵微粒的运动,具有非接触、生物兼容性好、无需对微粒进行化学生物标记、装置简单易集成等优点,在精密制造、精准医疗等领域具有广阔的应用前景,是当前操控领域的研究热点。该文主要综述最近十年声辐射力理论研究、声场调控方法以及微粒操控形式等方面的研究工作,并对声操控的未来发展方向进行了展望。  相似文献   

8.
We show how holographic optical trapping can be used for the multipoint measurement of fluid flow in microscopic geometries. An array of microprobes can be simultaneously trapped and used to map out the fluid flow in a microfluidic device. The optical traps are alternately turned on and off such that the probe particles are displaced by the flow of the surrounding fluid and then retrapped. The particles' displacements are monitored by digital video microscopy and directly converted into velocity field values. This technique enables the measurement of a two-dimensional flow field at points arbitrarily distributed in a three-dimensional volume. The validity of the technique is demonstrated for the case of the flow around a spinning sphere and the flow at the outlet of a microchannel.  相似文献   

9.
The optical tweezer has been found to have many biomedical applications in trapping macromolecules and cells. For the trapping mechanism, there has to be a sharp spatial change in axial optical intensity and the particle size must be much greater than the wavelength. Similar phenomenon may exist in acoustics. This work was undertaken to demonstrate theoretically that it is possible to acoustically trap particles near the focal point where most of the acoustic energy is concentrated if certain conditions are met. Acoustic force exerted on a fluid particle in ultrasonic fields is analyzed in a ray acoustics regime where the wavelength of acoustic beam is much smaller than the size of the particle. In order to apply the acoustical tweezer to manipulating macromolecules and cells whose size is in the order of a few microns or less, a prerequisite is that the ultrasound wavelength has to be much smaller than a few microns. In this paper, the analysis is therefore based on the field pattern produced by a strongly focused 100 MHz ultrasonic transducer with Gaussian intensity distribution. For the realization of acoustic trapping, negative axial radiation force has to be generated to pull a particle towards a focus. The fat particle considered for acoustic trapping in this paper has an acoustic impedance of 1.4 MRayls. The magnitude of the acoustic axial radiation force that has been calculated as the size of the fat particle is varied from 8lambda to 14lambda. In addition, both Fresnel coefficients at various positions are also calculated to assess the interaction of reflection and refraction and their relative contribution to the effect of the acoustical tweezer. The simulation results show that the feasibility of the acoustical tweezer depends on both the degree of acoustic impedance mismatch and the degree of focusing relative to the particle size.  相似文献   

10.
The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump.  相似文献   

11.
Identification of bio-aerosol particles may be enhanced by size sorting before applying analytical techniques. In this paper, the use of ultrasonic acoustic radiation pressure to continuously size fractionate particles in a moving air stream is described. Separate particle-laden and clean air streams are introduced into a channel and merged under laminar flow conditions. An ultrasonic transducer, mounted flush to one wall of the channel, excites a standing ultrasonic wave perpendicular to the flow of the combined air stream. Acoustic radiation forces on the particles cause them to move transverse to the flow direction. Since the radiation force is dependent upon the particle size, larger particles move a greater transverse distance as they pass through the standing wave. The outlet flow is then separated into streams, each containing a range of particle sizes. Experiments were performed with air streams containing glass microspheres with a size distribution from 2-22 μm, using a centerline air stream velocity of approximately 20 cm/s. An electrostatic transducer operating at a nominal frequency of 50 kHz was used to drive an ultrasonic standing wave of 150 dB in pressure amplitude. The microsphere size distributions measured at the outlet were compared with the predictions of a theoretical model. Experiments and theory show reasonable correspondence. The theoretical model also indicates an optimal partitioning of the particle-laden and clean air inlet streams.  相似文献   

12.
Ultrasonic manipulation, which uses acoustic radiation forces, is a contactless manipulation technique. It allows the simultaneous handling of single or numerous particles (e.g., copolymer beads, biological cells) suspended in a fluid, without the need for prior localization. Here it is reported on a method for two-dimensional arraying based on the superposition of two in-plane orthogonally oriented standing pressure waves. A device has been built and the experimental results have been compared with a qualitative analytical model. A single piezoelectric transducer is used to excite the structure to vibration, which consists of a square chamber etched in silicon sealed with a glass plate. A set of orthogonally aligned electrodes have been defined on one surface of the piezoelectric. This allows either a quasi-one-dimensional standing pressure field to be excited in one of two directions or if both electrodes are activated simultaneously a two-dimensional pressure field to be generated. Two different operational modes are presented: two signals identical in amplitude and frequency were used to trap particles in oval shaped clumps; two signals with slightly different frequencies to trap particles in circular clumps. The transition between the two operational modes is also investigated.  相似文献   

13.
Simulation of hydrodynamics in ultrasonic batch reactor containing immobilized enzymes as catalyst is done. A transducer with variable power and constant frequency (24 kHz) is taken as source of ultrasound (US). Simulation comprises two steps. In first step, acoustic pressure field is simulated and in second step effect of this field on particle trajectories is simulated. Simulation results are compared with experimentally determined particle trajectories using PIV Lab (particle image velocimetry). Effect of varying ultrasonic power, positioning and number of ultrasonic sources on particle trajectories is studied. It is observed that catalyst particles tend to orientate according to pattern of acoustic pressure field. An increase in ultrasonic power increases particle velocity and also brings more particles into motion. Simulation results are found to be in agreement with experimentally determined data.  相似文献   

14.
We report on the development of a microfluidic system for the electrical detection of single pollen allergen particles. Our device consists of 500 nm electrode gaps fabricated in an 800 nm wide fluidic channel. We flowed pollen allergen particles of average size 330 nm along the channel via fluid pumping and simultaneously monitored temporal change in dc current flowing through the sensing electrodes. Current spikes were detected, which can be attributed to a capacitance discharging upon trapping/detrapping of single allergens in the electrode gap. This sensing mechanism may open new avenues for a highly sensitive pollen allergen sensor.  相似文献   

15.
脉冲超声换能器是超声检测的关键部件,为了获取其声场特性参数,文中基于小球反射法原理,采用虚拟仪器技术和单片机技术设计了声场测试系统。系统的程控交互界面采用了美国国家仪器公司研制开发的图形化编程软件LabVIEW来设计,在程控交互界面程序中通过调用动态链接库DLL来对系统核心硬件超声发射接收卡进行数据通信及对卡功能进行设置,同时系统上位机通过RS232串口与下位机单片机通讯,实现对三轴扫查平台的多种扫查方式控制。该系统可实时显示脉冲换能器声压分布图像,并可通过对声压分布数据实现对换能器近场长度及扩散角等参数的测量。  相似文献   

16.
Bálek R  Pekárek S  Bartáková Z 《Ultrasonics》2006,44(Z1):e549-e553
The effect of power ultrasound application on DC hollow needle to plate atmospheric pressure electrical discharge enhanced by the flow of air through the needle electrode was studied experimentally. It was found that applying ultrasound increases discharge volume. In this volume take place plasmachemical processes, used in important ecological applications such as the production of ozone, VOC decomposition and de-NOx processes enhancement. In our experiments we used a negatively biased needle electrode as a cathode and a perpendicularly placed surface of the ultrasonic resonator--horn--as an anode. To demonstrate the effect of ultrasound waves on electrical discharge photographs of the discharge for the needle to the ultrasonic resonator at distances of 4, 6 and 8mm are shown. By varying the distance between needle and the surface of the transducer, we were able to create the node or the antinode at the region around the tip of the needle, where the ionization processes are effective. In our experimental arrangement the amplitude of acoustic pressure at antinode exceeded 10(4) Pa. The photographs reveal that the diameter of the discharge on the surface of the ultrasonic horn is increased when ultrasound is applied. The increase of discharge volume caused by the application of ultrasound can be explained as a combined effect of the change of the reduced electric field E/n (E is electric field strength and n is the neutral particles density), strong turbulence of the particles in the discharge region caused by quick changes of amplitudes of the standing ultrasonic wave and finally by the boundary layer near the ultrasonic transducer perturbations due to vibrations of the transducer surface.  相似文献   

17.
A procedure is demonstrated to quantitatively evaluate the acoustic radiation forces in microfluidic particle manipulation chambers. Typical estimates of the acoustic pressure and the acoustic radiation force are based on an analytical solution for a simple one-dimensional standing wave pattern. The complexities of a typical microfluidic channel limit the usefulness of this approach. By leveraging finite elements, and a generalized equation for the acoustic radiation force, channel designs can be investigated in two and three dimensions. Calculations and experimental observations in this report and the literature, confirm these claims.  相似文献   

18.
With Laser Reflective Tomography(LRT),the near fields of ultrasonic transducers were measured and analyzed.The principle of LRT measurement of ultrasonic field distribution was introduced and an experimental system was set up.Acoustic pressure of a multiple element piston transducer was measured by using of a laser vibrometer.Its distribution in amplitude and phase was obtained.The acoustic pressure in the same region was measured with a needle hydrophone to validate the LRT method.Furthermore,through reconstruction of acoustic fields,it indicated that LRT method is suitable for predicting the distribution on transducers'surface and conditions of active elements.  相似文献   

19.
Microfluidic technology has great advantages in the precise manipulation of micro and nano particles, and the separation of micro and nano particles based on ultrasonic standing waves has attracted much attention for its high efficiency and simplicity of structure. This paper proposes a device that uses three modes of ultrasonic standing waves to continuously separate particles with positive acoustic contrast factor in microfluidics. Three modes of acoustic standing waves are used simultaneously in different parts of the microchannel. According to the different acoustic radiation force received by the particles, the particles are finally separated to the pressure node lines on both sides and the center of the microchannel. In this separation method, initial hydrodynamic focusing and satisfying various equilibrium constraints during the separation process are the key. Through numerical simulation, the resonance frequency of the interdigital transducer, the distribution of sound pressure in the liquid, and the relationship between the interdigital electrode voltage and the output sound pressure are obtained. Finally, the entire separation process in the microchannel was simulated, and the separation of the two particles was successfully achieved. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.  相似文献   

20.
复杂流场的超声-激光测量原理研究   总被引:1,自引:1,他引:0  
陈长乐  尚志远 《光子学报》1996,25(8):749-754
本文从复杂流场—旋涡场参量的超声—激光测试方法的需要出发,论述了超声波产生的声相位光栅对激光产生的偏转效应.并研制了适用于产生空气超声相位光栅的大功率高频超声换能器、位移灵敏接收器、数字相位差测定仪等设备,采用了超声发射的匹配技术等,从而获得了明显的空气超声-激光偏转效应,并且测定了两光束的偏转时间差.本文的结果为利用超声-激光的空气声光偏转效应测量空气旋涡流场参量提供了实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号