首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We say that a vertexx of a graph is predominant if there exists another vertexy ofG such that either every maximum clique ofG containingy containsx or every maximum stable set containingx containsy. A graph is then called preperfect if every induced subgraph has a predominant vertex. We show that preperfect graphs are perfect, and that several well-known classes of perfect graphs are preperfect. We also derive a new characterization of perfect graphs.  相似文献   

2.
A graph israndomly matchable if every matching of the graph is contained in a perfect matching. We generalize this notion and say that a graphG israndomly H-coverable if every set of independent subgraphs, each isomorphic toH, that does not cover the vertices ofG can be extended to a larger set of independent copies ofH. Various problems are considered for the situation whereH is a path. In particular, we characterize the graphs that are randomlyP 3 -coverable.  相似文献   

3.
A conjecture of Toft [17] asserts that any 4-critical graph (or equivalently, every 4-chromatic graph) contains a fully odd subdivision ofK 4. We show that if a graphG has a degree three nodev such thatG-v is 3-colourable, then eitherG is 3-colourable or it contains a fully oddK 4. This resolves Toft's conjecture in the special case where a 4-critical graph has a degree three node, which is in turn used to prove the conjecture for line-graphs. The proof is constructive and yields a polynomial algorithm which given a 3-degenerate graph either finds a 3-colouring or exhibits a subgraph that is a fully odd subdivision ofK 4. (A graph is 3-degenerate if every subgraph has some node of degree at most three.)  相似文献   

4.
Tibor Gallai made the following conjecture. LetG be ak-chromatic colour-critical graph. LetL denote the set of those vertices ofG having valencyk−1 and letH be the rest ofV(G). Then the number of components induced byL is not less than the number of components induced byH, providedL ≠ 0. We prove this conjecture in a slightly generalized form. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

5.
LetG be a graph,VP(G) its vertex packing polytope and letA(G) be obtained by reflectingVP(G) in all Cartersian coordinates. Denoting byA*(G) the set obtained similarly from the fractional vertex packing polytope, we prove that the segment connecting any two non-antipodal vertices ofA(G) is contained in the surface ofA(G) and thatG is perfect if and only ifA*(G) has a similar property.  相似文献   

6.
Acycle double cover of a graph,G, is a collection of cycles,C, such that every edge ofG lies in precisely two cycles ofC. TheSmall Cycle Double Cover Conjecture, proposed by J. A. Bondy, asserts that every simple bridgeless graph onn vertices has a cycle double cover with at mostn–1 cycles, and is a strengthening of the well-knownCycle Double Cover Conjecture. In this paper, we prove Bondy's conjecture for 4-connected planar graphs.  相似文献   

7.
A graph is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. In this paper we give an algorithm to test if a graph G is Berge, with running time O(|V (G)|9). This is independent of the recent proof of the strong perfect graph conjecture.* Currently this author is a Clay Mathematics Institute Research Fellow.** Supported by NSF grant DMI-0352885 and ONR grant N00014-97-1-0196. Supported by ONR grant N00014-01-1-0608, and NSF grant DMS-0070912. Supported by EPSRC grant GR/R35629/01.  相似文献   

8.
In this paper, we study a dynamic coloring of the vertices of a graph G that starts with an initial subset S of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set S is called a forcing set of G if, by iteratively applying the forcing process, every vertex in G becomes colored. The forcing number, originally known as the zero forcing number, and denoted F (G), of G is the cardinality of a smallest forcing set of G. We study lower bounds on the forcing number in terms of its minimum degree and girth, where the girth g of a graph is the length of a shortest cycle in the graph. Let G be a graph with minimum degree δ ≥ 2 and girth g ≥ 3. Davila and Kenter [Theory and Applications of Graphs, Volume 2, Issue 2, Article 1, 2015] conjecture that F (G) ≥ δ + (δ ? 2)(g ? 3). This conjecture has recently been proven for g ≤ 6. The conjecture is also proven when the girth g ≥ 7 and the minimum degree is sufficiently large. In particular, it holds when g = 7 and δ ≥ 481, when g = 8 and δ ≥ 649, when g = 9 and δ ≥ 30, and when g = 10 and δ ≥ 34. In this paper, we prove the conjecture for g ∈ {7, 8, 9, 10} and for all values of δ ≥ 2.  相似文献   

9.
A family ℱ of cuts of an undirected graphG=(V, E) is known to have the weak MFMC-property if (i) ℱ is the set ofT-cuts for someTV with |T| even, or (ii) ℱ is the set of two-commodity cuts ofG, i.e. cuts separating any two distinguished pairs of vertices ofG, or (iii) ℱ is the set of cuts induced (in a sense) by a ring of subsets of a setTV. In the present work we consider a large class of families of cuts of complete graphs and prove that a family from this class has the MFMC-property if and only if it is one of (i), (ii), (iii).  相似文献   

10.
An infinite graph G is calledstrongly perfect if each induced subgraph ofG has a coloring (C i :iI) and a clique meeting each colorC i . A conjecture of the first author and V. Korman is that a perfect graph with no infinite independent set is strongly perfect. We prove the conjecture for chordal graphs and for their complements. The research was begun at the Sonderforschungsbereich 343 at Bielefeld University and supported by the Fund for the Promotion of Research at the Technion.  相似文献   

11.
Our topic is an extension of the following classical result of Hall to hypergraphs: A bipartite graph G contains a perfect matching if and only if for each independent set X of vertices, at least |X| vertices of G are adjacent to some vertex of X. Berge generalized the concept of bipartite graphs to hypergraphs by defining a hypergraph G to be balanced if each odd cycle in G has an edge containing at least three vertices of the cycle. Based on this concept, Conforti, Cornuéjols, Kapoor, and Vušković extended Hall's result by proving that a balanced hypergraph G contains a perfect matching if and only if for any disjoint sets A and B of vertices with |A| > |B|, there is an edge in G containing more vertices in A than in B (for graphs, the latter condition is equivalent to the latter one in Hall's result). Their proof is non-combinatorial and highly based on the theory of linear programming. In the present paper, we give an elementary combinatorial proof. Received April 29, 1997  相似文献   

12.
In this paper, we study a generalization of the paired domination number. Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a k-distance paired dominating set of G if D is a k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect matching. The k-distance paired domination number is the cardinality of a smallest k-distance paired dominating set of G. We investigate properties of the k-distance paired domination number of a graph. We also give an upper bound and a lower bound on the k-distance paired domination number of a non-trivial tree T in terms of the size of T and the number of leaves in T and we also characterize the extremal trees.  相似文献   

13.
It is shown that the generating function of critical configurations of a version of a chip firing game on a graphG is an evaluation of the Tutte polynomial ofG, thus proving a conjecture of Biggs [3]. Supported by a grant from D.G.A.P.A.  相似文献   

14.
A class of graphs is vertex Ramsey if for allH there existsG such that for all partitions of the vertices ofG into two parts, one of the parts contains an induced copy ofH. Forb (T,K) is the class of graphs that induce neitherT norK. LetT(k, r) be the tree with radiusr such that each nonleaf is adjacent tok vertices farther from the root than itself. Gyárfás conjectured that for all treesT and cliquesK, there exists an integerb such that for allG in Forb(T,K), the chromatic number ofG is at mostb. Gyárfás' conjecture implies a weaker conjecture of Sauer that for all treesT and cliquesK, Forb(T,K) is not vertex Ramsey. We use techniques developed for attacking Gyárfás' conjecture to prove that for allq, r and sufficiently largek, Forb(T(k,r),K q ) is not vertex Ramsey.Research partially supported by Office of Naval Research grant N00014-90-J-1206.  相似文献   

15.
Thescore vector of a labeled digraph is the vector of out-degrees of its vertices. LetG be a finite labeled undirected graph without loops, and let σ(G) be the set of distinct score vectors arising from all possible orientations ofG. Let ϕ(G) be the set of subgraphs ofG which are forests of labeled trees. We display a bijection between σ(G) and ϕ(G). Supported in part by ONR Contract N00014-76-C-0366.  相似文献   

16.
Cycles through specified vertices of a graph   总被引:1,自引:0,他引:1  
We prove that ifS is a set ofk−1 vertices in ak-connected graphG, then the cycles throughS generate the cycle space ofG. Moreover, whenk≧3, each cycle ofG can be expressed as the sum of an odd number of cycles throughS. On the other hand, ifS is a set ofk vertices, these conclusions do not necessarily hold, and we characterize the exceptional cases. As corollaries, we establish the existence of odd and even cycles through specified vertices and deduce the existence of long odd and even cycles in graphs of high connectivity.  相似文献   

17.
We call the digraph D an orientation of a graph G if D is obtained from G by the orientation of each edge of G in exactly one of the two possible directions. The digraph D is an m-coloured digraph if the arcs of D are coloured with m-colours.Let D be an m-coloured digraph. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions: (i) for every pair of different vertices u,vN there is no monochromatic directed path between them and (ii) for every vertex xV(D)-N there is a vertex yN such that there is an xy-monochromatic directed path.In this paper we obtain sufficient conditions for an m-coloured orientation of a graph obtained from Kn by deletion of the arcs of K1,r(0?r?n-1) to have a kernel by monochromatic.  相似文献   

18.
We generalize the concept of perfect graphs in terms of additivity of a functional called graph entropy. The latter is an information theoretic functional on a graphG with a probability distributionP on its vertex set. For any fixedP it is sub-additive with respect to graph union. The entropy of the complete graph equals the sum of those ofG and its complement G iffG is perfect. We generalize this recent result to characterize all the cases when the sub-additivity of graph entropy holds with equality.The research of the authors is partially supported by the Hungarian National Foundation for Scientific Research (OTKA), grant No. 1806 resp. No. 1812.  相似文献   

19.
Closed Separator Sets   总被引:1,自引:0,他引:1  
A smallest separator in a finite, simple, undirected graph G is a set SV (G) such that GS is disconnected and |S|=κ(G), where κ(G) denotes the connectivity of G. A set S of smallest separators in G is defined to be closed if for every pair S,TS, every component C of GS, and every component S of GT intersecting C either X(C,D) := (V (C) ∩ T) ∪ (TS) ∪ (SV (D)) is in S or |X(C,D)| > κ(G). This leads, canonically, to a closure system on the (closed) set of all smallest separators of G. A graph H with is defined to be S-augmenting if no member of S is a smallest separator in GH:=(V (G) ∪ V (H), E(G) ∪ E(H)). It is proved that if S is closed then every minimally S-augmenting graph is a forest, which generalizes a result of Jordán. Several applications are included, among them a generalization of a Theorem of Mader on disjoint fragments in critically k-connected graphs, a Theorem of Su on highly critically k-connected graphs, and an affirmative answer to a conjecture of Su on disjoint fragments in contraction critically k-connected graphs of maximal minimum degree.  相似文献   

20.
Diperfect graphs     
Gallai and Milgram have shown that the vertices of a directed graph, with stability number α(G), can be covered by exactly α(G) disjoint paths. However, the various proofs of this result do not imply the existence of a maximum stable setS and of a partition of the vertex-set into paths μ1, μ2, ..., μk such tht |μiS|=1 for alli. Later, Gallai proved that in a directed graph, the maximum number of vertices in a path is at least equal to the chromatic number; here again, we do not know if there exists an optimal coloring (S 1,S 2, ...,S k) and a path μ such that |μ ∩S i|=1 for alli. In this paper we show that many directed graphs, like the perfect graphs, have stronger properties: for every maximal stable setS there exists a partition of the vertex set into paths which meet the stable set in only one point. Also: for every optimal coloring there exists a path which meets each color class in only one point. This suggests several conjecties similar to the perfect graph conjecture. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号