首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition and antimicrobial activity of the essential oil of Tanacetum walteri were studied. Aerial flowering parts of plant were collected from North Khorasan Province of Iran and the essential oil was isolated by hydrodistillation and analysed by GC-FID and GC-MS. Antimicrobial activity of the essential oil was determined by disc diffusion and MIC and MBC determination. Thirty-five compounds were identified in the oil of T. walteri accounting for 94.4% of the total oil. Thymol (22.5%), 1,8-cineole (8.2%), umbellulone (6.9%), α-bisabolol (6.3%) and camphor (5.3%) were as the principal constituents. The highest antimicrobial activity of the essential oil was observed against Staphylococcus aureus, Enterococcus faecalis and Klebsiella pneumoniae with MIC value of 0.63 mg/mL. The inhibitory effect of the essential oil of T. walteri could be attributed mainly to the high levels of phenolic compound thymol and oxygenated terpenes in essential oil.  相似文献   

2.
The composition of the essential oil obtained by hydrodistillation from the aerial parts of Satureja kitaibelii from Rtanj mountain (Serbia), collected during three years, was studied. Thirty-nine components were identified in each sample of S. kitaibelii essential oil, representing about 87% of the oils. p-Cymene was the most dominant compound in all three oils (27.9%, 14.7% and 24.4%, respectively). The simple formulation of a lozenge with 0.2% of S. kitaibelii essential oil was prepared and the antimicrobial activity of the essential oil and the lozenge with essential oil was tested using a broth microdilution assay. Both essential oil and lozenge possessed strong antimicrobial activity with MIC values of 0.10-25 microg/mL, and 0.97-15.6 mg/mL, respectively.  相似文献   

3.
Plant extracts and products have been used for centuries in traditional medicine; for most of them, in addition to the scant scientific credibility, the chemical composition and spectrum of activity are yet to be explored. To put forward this effort and to identify novel antimicrobial agents, the inhibitory activities of methanolic extract and essential oil from Coriaria nepalensis against various microorganisms including pathogenic yeast, and Gram-positive and negative bacteria were evaluated. Chemical compositions of C. nepalensis methanolic extract and essential oil were analysed by gas chromatography-mass spectrometry. In vitro susceptibility tests against all the tested isolates were performed in terms of minimum inhibitory concentration (MIC), and well diffusion assay using standard protocols. All microorganisms tested were profoundly found susceptible to both the C. nepalensis extract and oil with MIC values of 1.3-2.1?mg?mL?1 (Gram-positive bacteria), 1.4-2.2?mg?mL?1 (Gram-negative bacteria) and 0.9-1.6?mg?mL?1 (yeasts). The extent of inhibition was shown more by methanolic extract than by essential oil. This study is the first to report the antimicrobial activity of extracts obtained from the C. nepalensis. It can be concluded that the observed antimicrobial characteristics of C. nepalensis indicate that it might be a promising antimicrobial agent.  相似文献   

4.
The composition of essential oil isolated from Satureja thymbra, growing wild in Libya, was analyzed by GC and GC-MS. The essential oil was characterized by γ-terpinene (39.23%), thymol (25.16%), p-cymene (7.17%) and carvacrol (4.18%) as the major constituents. Antioxidant activity was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. It possessed strong antioxidant activity (IC50 = 0.0967 mg/mL). The essential oil was also screened for its antimicrobial activity against eight bacterial and eight fungal species, showing excellent antimicrobial activity against the microorganisms used, in particular against the fungi. The oil of S. thymbra showed bacteriostatic activity at 0.001-0.1 mg/mL and was bactericidal at 0.002-0.2 mg/mL; fungistatic effects at 0.001-0.025 mg/mL and fungicidal effects at 0.001-0.1 mg/mL. The main constituents thymol, carvacrol and γ-terpinene also showed strong antimicrobial activity. The commercial fungicide bifonazole showed much lower antifungal activity than the tested oil.  相似文献   

5.
The essential oil of Tibetan medicine Dracocephalum heterophyllum Benth was obtained by hydrodistillation with a 0.7% (v/w) yield. The chemical composition of the essential oil was analyzed by gas chromatography-mass spectral (GC-MS). Eighty-three compounds, constituting about 89.83% of the total oil, were identified. The main compound in the oil were Cineole (14.89%), trans-nerolido (7.10%), 1-m-ethyl-2-(1-methylethyl)-benzene (4.42%), Germacrene-D (4.84%), Decahydro-1,1,4,7-tetramethyl-4aH-cycloprop[e]azulen-4a-ol (4.94%), p-menth-1-en-4-ol,acetate (4.34%), 4-methyl-1-(1-methylethyl)-3-cyclohexen-1-ol (4.10%). The antimicrobial activity of the oil was evaluated against nine bacterial, one yeast, and three fungi. The antimicrobial test result showed that the essential oil strongly inhibited the growth of test microorganisms studied. The maximal inhibition zones and MIC values for bacterial, yeast and fungi strain were in the range of 18-25 mm and 0.039-0.156 mg mL(-1); *20 mm, and 0.156 mg mL(-1); 8-24 mm and 0.313-2.5 mg mL(-1); respectively. The antioxidant activity of the oil was determined by the malonyldialdehyde (MDA) test, measuring the MDA concentration in mouse liver cell microsomal after induced lipid peroxidation using FeSO(4) and ascorbic acid, The inhibition of lipid peroxidation was 59.3% with a concentration of 0.5 mg mL(-1). Result presented here may suggest that the essential oil of D. heterophyllum posses antimicrobial and antioxidant properties, and therefore, they can be one of new medicinal resources for antimicrobial agent and/or used as a natural preservative ingredient in food and cosmetics and pharmaceuticals industry.  相似文献   

6.
The essential oil obtained by hydro-distillation from the flowers of Halimondendron halodendron (Leguminosae) was analyzed for its chemical composition by gas chromatography-mass spectrometry (GC-MS). Undecane (16.4%), dodecane (15.3%), tridecane (12.5%), decane (8.2%), 6,10,14-trimethyl-pentadecan-2-one (6.3%), methyl palmitate (6.0%), methyl linolenate (4.1%) and ethylcyclohexane (4.1%) were the major compounds of the thirty-five identified components of the oil. The essential oil was shown to have a broad spectrum of antimicrobial activity with MIC values ranging from 100 to 250 microg/mL, and IC50 values from 40.4 to 193.8 microg/mL. The oil also showed strong antioxidant activity, with an especially high metal chelating capacity of ferrous ions with an IC50 value of 7.4 microg/mL on ferrozine-Fe2+ complex formation.  相似文献   

7.
The chemical composition, and antioxidant and antimicrobial activities of the essential oil isolated from the leaf of Machilus japonica from Taiwan have been investigated. The essential oil from the fresh leaves was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. A total of 97 compounds were identified, representing 100% of the oil. The main components identified were alpha-phellandrene (14.5%), alpha-pinene (12.8%), thymol (12.6%), beta-pinene (8.3%), alpha-terpineol (6.5%) and carvacrol (6.0%). The antioxidant activity of the oil was tested by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging capability test. The results showed that the IC50 was 51.8 microg/mL. The antimicrobial activity of the oil was tested by the disc diffusion and micro-broth dilution methods against ten microbial species. The oil exhibited strong growth suppression against Gram-positive bacteria and yeast, with inhibition zones of 48-54 mm and MIC values of 16.12-32.25 microg/mL, respectively. For the antioxidant and antimicrobial activities of the oil, the active source compounds were determined to be thymol and carvacrol.  相似文献   

8.
This study investigated the chemical composition, antioxidant, antimicrobial and anti-wood-decay fungal activities of the essential oil isolated from the twigs of Taiwania cryptomerioides from Taiwan. The essential oil was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. A total of 35 compounds were identified, representing 100% of the oil. The main components identified were alpha-cadinol (45.9%), ferruginol (18.9%) and beta-eudesmol (10.8%). The antioxidant activity of the oil was tested by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging capability test. The results showed an IC50 of 90.8 +/- 0.2 microg/mL. The active source compound was ferruginol. The antimicrobial activity of the oil was tested by the disc diffusion and micro-broth dilution methods against ten microbial species. The oil exhibited strong growth suppression against Gram-positive bacteria and yeast with inhibition zones of 45-52 mm and MIC values of 31.25-62.5 microg/mL, respectively. The anti-wood-decay fungal activity of the oil was also evaluated. The oil demonstrated excellent activity against four wood-decay-fungal species. For the antimicrobial and anti-wood-decay fungal activities of the oil, the active source compounds were determined to be alpha-cadinol, beta-eudesmol and ferruginol.  相似文献   

9.
This study represents the first report on the chemical composition and antimicrobial activity of the essential oil from the branches of Jacaranda cuspidifolia Mart. Thirty-three compounds were identified by Gas Chromatography-Mass Spectrometry (GC-MS) and the major constituents of the essential oil were Palmitic acid (31.36%), (Z) ? 9,17-Octadecadienal (12.06%), Ethyl palmitate (3.81%), Perhydrofarnesyl acetone (2.07%), γ-Maaliene (1.88%), and Cedro (1.42%) and 9,12-Octadecadienoic acid ethyl ester (1.42%). The in vitro antimicrobial activities of the essential oil were evaluated by the disc diffusion method, and the inhibition zones against Escherichia coli, Staphylococcus aureus and Candida albicans were 7.10, 8.20 and 7.25 mm, respectively. The oil showed moderate activities against E. coli, S. aureus and C. albicans with minimum inhibition concentration (MIC) values of 17.3 mg/mL, 12.9 mg/mL and 16.0 mg/mL, respectively.  相似文献   

10.
Plant species Satureja kitaibelii Wierzb. ex Heuff. is used as a spice and as a natural preservative for food and herbal tea, owing to its characteristic scent and flavor as well as high antimicrobial activity. In the present study, the antimicrobial activity of isolated essential oil of S. kitaibelii was tested against a panel of 30 pathogenic microorganisms (foodborne microbes, selected multiresistant bacterial isolates from the patient wounds and dermatophyte isolates). Limonene (15.54%), p-cymene (9.99%), and borneol (8.91%) appeared as the main components in 44 identified compounds representing 98.44% of the oil. Essential oil of S. kitaibelii showed significant activity against a wide spectrum of foodborne microbes (MIC=0.18-25.5 microg mL(-1)) and multiresistant bacterial isolates (MIC=6.25-50.0 microg mL(-1)), as well as against dermatophyte strains (MIC=12.5-50.0 microg mL(-1)). These results demonstrate that S. kitaibelii essential oil could be used as a natural potential antimicrobial agent against pathogenic strains in the treatment of foodborne disease, wound and skin infections.  相似文献   

11.
The genus Acinetobacter has gained importance in recent years due to involvement in serious infections and antimicrobial resistance. Many plants have been evaluated not only for direct antimicrobial activity, but also as resistance modifying agents. The Essential oil of Citrus limon (EOCL) addition at 156.25?μgmL(-1) (MIC/8) sub-inhibitory concentration in the growth medium led to MIC decrease for amikacin, imipenem and meropenem. The Essential oil of Cinnamomum zeylanicum (EOCZ) addition at 78.125?μg?mL(-1) (MIC/8) sub-inhibitory concentrations in the growth medium caused drastic MIC reduction of amikacin. Results of combining antibiotics and essential oils had shown us a synergistic effect with both essential oils/amikacin combinations. An additive effect was observed with the combinations of both essential oils and gentamicin. The results of this study suggest that essential oil of C. limon and C. zeylanicum may suppress the growth of Acinetobacter species and could be a source of metabolites with antibacterial modifying activity.  相似文献   

12.
The present work describes the chemical composition and evaluates the antimicrobial and the anti-acetylcholinesterase properties of the flower oil from the Tunisian Ferula lutea obtained by hydrodistillation and analyzed by combination of GC/FID and GC/MS. The chemical composition of the flower oil of this species is reported for the first time. Seventeen compounds were identified accounting for 94.3% of the total oil. The chemical composition of this essential oil was characterized by a high proportion of monoterpene hydrocarbons (80.4%) among which delta-3-carene (31.2%) and alpha-pinene (25.8%) were the predominant compounds. The oxygenated monoterpenes represent the second major fraction (12.0%), 2,3,6-trimethylbenzaldehyde (10.9%) being the predominant one. Furthermore, the isolated oil was tested for its antimicrobial activity using the disc-diffusion and the microdilution assays against six Gram-positive and five Gram-negative bacteria as well as towards eight Candida species. It was found that flower oil of F. lutea exhibited interesting antibacterial and anticandidal activity (MIC = 39 mcirog/mL against Escherichia coli, Staphylococcus aureus and S. epidermidis and MIC = 156 microg/mL against Candida albicans). The anti-acetylcholinesterase effect of this oil was also evaluated in this work. Results showed that this oil exhibits significant activity (IC50 =70.25 +/- 5.41 microg/mL).  相似文献   

13.
This study reported the volatile profile, the antimicrobial activity and the synergistic potential of essential oil (EO) from the Moroccan endemic Thymus atlanticus (Ball) Roussine, in combination with the antibiotics ciprofloxacin and fluconazole for the first time, to the best of our knowledge. The EO chemical composition was determined by gas chromatography coupled to mass spectrometry (GC-MS) analysis and the antimicrobial activity assessed by the disc diffusion method against three Gram positive (Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and one clinical isolate, Klebsiella pneumonia). The antifungal activity was evaluated in four pathogenic yeasts (Candida albicans, C. glabrata, C. krusei and C. parapsilosis). The minimum inhibition concentration (MIC) and the synergistic effect with ciprofloxacin and fluconazole were determined by the two-fold dilution technique and checkerboard test, respectively. Twenty-one constituents were identified by GC-MS in the EO, including carvacrol (21.62%) and borneol (21.13%) as the major components. The EO exhibited a significant antimicrobial activity with inhibition zones ranging from 0.7 mm to 22 mm for P. aeruginosa and B. subtilis, respectively, and MIC values varying from 0.56 mg/mL to 4.47 mg/mL. The fractional inhibitory concentration index (FICI) values ranged from 0.25 to 0.50 for bacteria and from 0.25 to 0.28 for yeasts. The maximum synergistic effect was observed for K. pneumonia with a 256-fold gain of antibiotic MIC. Our results have suggested that EO from T. atlanticus may be used alone or in association with antibiotics as a new potential alternative to prevent and control the emergence of resistant microbial strains both in the medical field and in the food industry.  相似文献   

14.
The essential oil obtained by hydrodistillation from leaves of Anaxagorea brevipes was analysed by gas chromatography fitted with a flame ionisation detector (GC–FID) and coupled to mass spectrometry (GC–MS). Thirty one components were identified, representing around 75.7% of total oil. The major components were β-eudesmol (13.16%), α-eudesmol (13.05%), γ-eudesmol (7.54%), guaiol (5.12%), caryophyllene oxide (4.18%) and β-bisabolene (4.10%). The essential oil showed antimicrobial activity against Gram-positive bacteria and yeast with the MIC values between 25.0 and 100 μg/mL. The highest antiproliferative activity was observed for the oil against MCF-7 (breast, TGI = 12.8 μg/mL), NCI-H460 (lung, TGI = 13.0 μg/mL) and PC-3 (prostate, TGI = 9.6 μg/mL) cell lines, while against no cancer cell line HaCat (keratinocyte) the TGI was 38.8 μg/mL. The oil exhibited a small antioxidant activity assessed through ORAC-FL assay (517 μmol TE/g). This is the first report regarding the chemical composition and bioactivity of A. brevipes essential oil.  相似文献   

15.
The essential oil of the leaves of Feronia elephantum Corr. was analyzed by gas chromatography and gas chromatography/mass spectrometry. The main constituents were beta-pinene (28.4%), Z-anethole (22.1%), methyl chavicol (12.0%) and E-anethole (8.1%), among thirty-three identified compounds, which represented 92.6% of the total oil. The antimicrobial activity was tested against five Gram-positive and eight Gram-negative bacteria, and four fungi. The oil was active against Micrococcus luteus (Gram-positive bacterium), Proteus mirabilis (Gram-negative bacterium), Penicillium chrysogenum and Aspergillus niger (fungi) with MIC values of 0.31 +/- 0.06, 0.52 +/- 0.10, 0.20 +/- 0.50 and 0.26 +/- 0.52 mg/mL, respectively.  相似文献   

16.
An efficient antimicrobial activity was evidenced in a complex β-cyclodextrin–essential oil of Thymus catharinae Camarda (carvacrol chemotype). The release of carvacrol with respect to the antimicrobial activity was calculated as function of time. The βCD-complex of the bioactive agent was obtained by a simple, efficient and non-expensive method without purification of the carvacrol chemotype essential oil. According to the starting stoichiometry of β-cyclodextrin with respect to carvacrol, two inclusion complexes were produced, 1:1 and 2:1, respectively. The results demonstrate that, although the antimicrobial activity of the essential oil of T. catharinae Camarda is remarkable but acts too quickly in some types of application, its inclusion in a bio-matrix allows a slower release and improves its effectiveness.  相似文献   

17.
The present study investigated the essential oil obtained from Campomanesia guazumifolia (Cambess.) O. Berg, an aromatic plant used in Brazilian folk medicine. The chemical composition was performed by GC×GC/qMS. The antioxidant and antimicrobial activities were evaluated by DPPH and BCB and, MIC assays, respectively. Sixty-eight compounds were identified in the oil, where the major compounds were bicyclogermacrene (15%), globulol (5%) and spathulenol (5%). Sesquiterpene hydrocarbons (29 compounds) and oxygenated sesquiterpenes (20 compounds) were the most representative classes of terpenes. DPPH (IC50 value 26.1 ± 0.5 μg/mL) and BCB (68.3 ± 1.5%) values indicated a significant antioxidant activity. The essential oil strongly inhibited Staphylococcus aureus (MIC 15 ± 0.1 μg/mL), Escherichia coli (MIC 25 ± 0.2 μg/mL) and Candida albicans (MIC 5 ± 0.1 μg/mL). The results give a deeper understanding of the chemical composition and report for the first time the antioxidant and antimicrobial potential of the C. guazumifolia essential oil.  相似文献   

18.
This study was designed to examine the in vitro antibacterial and antioxidant activities of the essential oils (EOs) of Thymus satureioides (T.s) and T. pallidus (T.p). EOs were isolated by steam distillation and analyzed by capillary gas chromatography and gas chromatography coupled to mass spectrometry (GC-MS). The major constituents of the volatile fraction of T. satureioides were bomeol (29.5%), carvacrol (9.1%), and beta-caryophyllene (8.2%), while those of T. pallidus were camphor (29.8%), dihydrocarvone (17.6%), bomeol (7.6%) and camphene (7.5%). The essential oils were tested against a panel of Gram+ and Gram- bacteria by using agar diffusion and broth dilution methods. The data indicated that the Gram-positive Bacillus subtilis was the most sensitive strain producing an average inhibition zone of 51.7 mm. Furthermore, Pseudomonas aeruginosa, known as a resistant strain, was also sensitive. The samples were also subjected to screening for their possible antioxidant activity by using the 2,2-diphenyl-l-picrylhydrazyl (DPPH) assay. The IC50 values of the oil of T. satureioides and T. pallidus were 0.32 and 11.6 mg/mL, respectively.  相似文献   

19.
Feverfew (Tanacetum parthenium L., Asteraceae) is a perennial medicinal plant which has been used to alleviate the symptoms of migraine, headache and rheumatoid arthritis and possesses numerous pharmacological activities. An ultra‐high‐performance supercritical fluid chromatographic method (UHPSFC) was developed and validated in accordance with the International Conference on Harmonization guidelines in order to determine the camphor content of the volatile oil, which was accurate, precise, robust and selective. The method was validated for specificity, accuracy (100.2%), repeatability and intermediate precision, linearity (r2 > 0.999), limit of detection (2.055 μg/mL), limit of quantification (6.228 μg/mL) and robustness. The common range of accuracy and linearity was between 0.125 and 1.000 mg/mL. Steam distillation was carried out in order to study the essential oil yield of three different T. parthenium L. samples originating from Hungarian medicinal herb collections. The camphor content of the essential oils from the aerial parts of feverfew samples from different origin was compared. Although the composition of the essential oil is well reported, a validated quantitative UHPSFC method for the determination of the constituents is presented herein for the first time.  相似文献   

20.
Variations in the essential oil composition of Thymus serpyllum L., growing wild in Estonia (33 samples) and in some other countries (Russia, Latvia and Armenia, seven samples) were determined. The oil were obtained from Estonia (46 samples) in yields 0.6-4.4 and 1.9-8.2 mL kg(-1) in other countries. The T. serpyllum herb grown in Estonia usually did not confirmed to the EP standard in the aspect of the essential oil contents (3.0 mL kg(-1)). Variations in the essential oil composition of wild thyme were studied using capillary gas chromatographic methods. A total of 94 components were identified. Thymol and carvacrol, mentioned in literature as principial components, are not the main components of the essential oil of wild thyme growing in Estonia. (E)-nerolidol, caryophyllene oxide, myrcene and borneol chemotypes of wild thyme drug are distinguishable. The chemical composition of samples from Russia, Latvia and Armenia is very variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号