首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel amperometric uric acid (UA) sensor has been developed by coating the surface of a gold electrode with a polystyrene (PS) membrane formed by 30 μL of a 30 mg mL−1 PS chloroform solution combined with 30 μL of a 5 mg mL−1 polymaleimidostyrene (PMS) solution as a dispersant for enzyme, uricase; this membrane has been successfully employed as an immobilization support for uricase. In the PS membrane, PMS forms micelle-like structures containing uricase in an active state. This immobilized uricase membrane permits the permeation of oxygen, which is consumed by the uricase reaction. A good linear relationship is obtained over the concentration range of 5-105 μM. The concentration of uric acid was determined at a negative potential based on the decrease in the reduction current of oxygen and the interference of l-ascorbic acid can be completely eliminated.  相似文献   

2.
The evaluation of a method for the estimation of serum urate using immobilized uricase is described, the resultant hydrogen peroxide produced being measured by the oxidative coupling of 3,5-dichloro-2-hydroxybenzenesulfonate and 4-aminophenazone in the presence of peroxidase. A continuous-flow analysis system incorporating the uricase tube was established, and the results obtained were correlated with an automated phosphotungstate method and with a manual uricase method employing an LKB 8600 Rate Reaction Analyser. The effect of ascorbic acid on the analysis of serum urate and the elimination of this interference by the use of ascorbate oxidase was also investigated. The precision, correlation, and high specificity obtained show that this is a satisfactory method for use in routine clinical laboratory works.  相似文献   

3.
Uricase purified from 20-day-old leaves of cowpea was immobilized on to epoxy resin membrane with 80% retention of initial activity of free enzyme and a conjugation yield of 0.056 mg/cm2. The uricase epoxy resin bioconjugate membrane was mounted over the sensing part of the combined electrode of ‘Aqualytic’ dissolved O2 (DO) meter to construct a uric acid biosensor. The biosensor measures the depletion of dissolved O2 during the oxidation of uric acid by immobilized uricase, which is directly proportional to uric acid concentration. The biosensor showed optimum response within 10-12 s at a pH 8.5 and 35 °C. A linear relationship was found between uric acid concentration from 0.025 to 0.1 mM and O2 (mg/l) consumed. The biosensor was employed for measurement of uric acid in serum. The mean value of uric acid in serum was 4.92 mg/dl in apparently healthy males and 3.11 mg/dl in apparently healthy females. The mean analytic recoveries of added uric acid in reaction mixture (8.9 and 9.8 mg/dl) were 93.6 ± 2.34 and 87.18 ± 3.17% respectively. The within and between batch CVs were <6.5 and <5.0%, respectively. The serum uric acid values obtained by present method and standard enzymic colorimetric method, showed a good correlation (r = 0.996) and regression equation being y = 0.984x + 0.0674. Among the various metabolites tested only, glucose (11%), urea (38%), NaCl (25%) and cholesterol (13%) and ascorbic acid (56%) caused decrease, while, MgSO4 and CaCl2 had no effect on immobilized enzyme. The enzyme electrode showed only 32% decrease during its use for 100 times over a period of 60 days at 4 °C.  相似文献   

4.
The layer-by-layer technique was exploited to immobilize the enzyme uricase onto indium tin oxide substrates coated with a layer of Prussian Blue. Uricase layers were alternated with either poly(ethylene imine) or poly(diallyldimethylammoniumchloride), and the resulting films were used as amperometric biosensors for uric acid. Biosensors with optimum performance had a limit of detection of 0.15 μA μmol l−1 cm−2 with a linear response between 0.1 and 0.6 μM of uric acid, which is sufficient for use in clinical tests. Bioactivity was preserved for weeks, and there was negligible influence from interferents, as detection was carried out at 0.0 V vs saturated calomel electrode. This paper is dedicated to the memory of Francisco C. Nart.  相似文献   

5.
Putrescine oxidase ([PO]; E.C. 1.4.3.4), which catalyzes the oxidative deamination of putrescine into γ-aminobutyraldehyde, has been partially purified from Candida guilliermondii. Among the substrates tested, putrescine has the highest reaction rate, followed by spermidine and cadaverine. The K IN values for putrescine, spermidine, and cadaverine were 20, 200, and 1.1 mM, respectively. The optimum pH and the temperature for PO were 8.0 and 37°C, respectively. Growth of Candida species on putrescine as the solenitrogen source induced the synthesis of PO that converts putrescine into Δ1-pyrroline and γ-aminobutyric acid. These two products were detected and identified from the culture medium. The enzyme was not activated by divalent cations. Among the species of Candida tested, the highest enzyme activity was found in cell-free extracts of C. guilliermondii. The pathway of putrescine degradation was identified by substrate analysis to be along the nonacetylated pathway in C. guilliermondii.  相似文献   

6.
Uric acid (UA) is determined using the UV-vis molecular absorption properties of peroxidase (HRP). The method as a whole involves UA oxidation in the presence of uricase (UOx), giving H2O2. The H2O2 then reacts with HRP forming the compound I species which returns to its initial form by reaction with UA and intramolecular reduction. The molecular absorption changes of HRP at 420 nm during the reaction enable the UA to be determined. A mathematical model relating the analytical signal to UA, UOx and HRP has been developed and experimentally validated. The possibility of carrying out both enzymatic reactions sequentially or simultaneously is discussed, the latter option producing better analytical performances. The method permits UA determination in the range 1.5 × 10−6-4.0 × 10−5 M, with an R.S.D. of about 3% (n = 5, 1.5 × 10−6 M UA). It has been applied to analyte determination in synthetic serum samples.  相似文献   

7.
Tears have a significant role in antioxidant defense in ocular tissues and since their collection is quick and noninvasive, their analysis would facilitate monitoring of pathophysiological changes. However, their low volume and low content of antioxidants makes analysis difficult; methods of high sensitivity are needed. In this paper, we present a method for tear analysis of two antioxidant molecules (ascorbic and uric acid) and of a lipid peroxidation indicator (malondialdehyde) with capillary electrophoresis. Tears were collected with Schirmer strips, extracted with a low‐pH phosphate buffer, centrifuged through membrane filters and an antioxidant was added. They were stable at ?70°C for 15 days. After pilot experiments, optimum electrophoretic separation was achieved in a 25 mm borate buffer, pH 10.0, containing 100 mm sodium dodecyl sulfate at 25°C and 20 kV. The developed method has good repeatability (<5% RSD), precision (<15% relative error values) and high sensitivity (LLOQ values of 20, 2.3 and 2.5 μM for ascorbate, urate and malondialdehyde, respectively). It was applied to the analysis of tears from healthy individuals and the antioxidant levels are in agreement with those obtained with other techniques. This method might serve as a tool to clarify the role of endogenous antioxidants in the pathophysiology of ocular diseases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Industrial wastewaters containing heavy metals pose a major environmental problem that needs to be remedied. The present study reports the ability of two non-living (dried) fresh water algae, Oedogonium sp. and Nostoc sp. to remove lead(II) from aqueous solutions in batch system under varying range of pH (2.99-7.04), contact time (5-300 min), biosorbent dose (0.1-0.8 g/L), and initial metal ion concentrations (100 and 200mg/L). The optimum conditions for lead biosorption are almost same for the two algal biomass Oedogonium sp. and Nostoc sp. (pH 5.0, contact time 90 and 70 min, biosorbent dose 0.5 g/L and initial Pb(II) concentration 200mg/L) however, the biomass of Oedogonium sp. was found to be more suitable than Nostoc sp. for the development of an efficient biosorbent for the removal of lead(II) from aqueous solutions, as it showed higher values of q(e) adsorption capacity (145.0mg/g for Oedogonium sp. and 93.5mg/g for Nostoc sp.). The equilibrium data fitted well in the Langmuir isotherms than the Freundlich isotherm, thus proving monolayer adsorption of lead on both the algal biomass. Analysis of data shows that the process involves second-order kinetics and thermodynamic treatment of equilibrium data shows endothermic nature of the adsorption process. The spectrum of FTIR confirms that the amino and carboxyl groups on the surface of algal biomass were the main adsorption sites for lead removal. Both the biosorbents could be regenerated using 0.1 mol/L HCl solution, with upto 90% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that both the algal biomass could be used as an efficient biosorbents for the treatment of lead(II) bearing wastewater streams.  相似文献   

10.
A new process for enzymatic synthesis of biodiesel at high water content (10–20%) with 96% conversion by lipase from Candida sp. 99–125 was studied. The lipase, a no-position-specific lipase, was immobilized by a cheap cotton membrane and the membrane-immobilized lipase could be used at least six times with high conversion. The immobilized lipase could be used for different oil conversion and preferred unsaturated fatty acids such as oleic acid to staturated fatty acids such as palmitic acid. The changes in concentration of fatty acids, diglycerides, and methyl esters in the reaction were studied and a mechanism of synthesis of biodiesel was suggested: the triglycerides are first enzymatically hydrolyzed into fatty acids, and then these fatty acids are further converted into methyl esters.  相似文献   

11.
For the first time, a polygalacturonase from the culture broth of Tetracoccosporium sp. was isolated and incubated at 30°C in an orbital shaker at 160 rpm for 48h. The enzyme was purified by ammonium sulfate precipitation and two-step ion-exchange chromatography and had an apparent molecular mass of 36 kDa, as shown by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Its optimum activity was at pH 4.3 and 40°C, and the K m and V max values of this enzyme (for polygalacturonic acid) were 3.23 mg/mL and 0.15 μmol/min, respectively. Ag+, Co2+, EDTA, Tween-20, Tween-80, and Triton X-100 stimulated polygalacturonase activity whereas Al3+, Ba2+, Ca2+, Fe2+, Fe3+, Ni2+, Mg2+, Mn2+, and SDS inhibited it. In addition, iodoacetamide and iodoacetic acid did not inhibit enzyme activity at a concentration of 1 mM, indicating that cysteine residues are not part of the catalytic site of polygalacturonase. We studied the kinetic properties and thermal inactivation of polygalacturonase. This enzyme exhibited a t 1/2 of 63 min at 60°C and its specific activity, turnover number, and catalytic efficiency were 6.17 U/mg, 113.64 min−1, and 35.18 mL/(min·mg), respectively. The activation energy (ΔE #) for heat inactivation was 5.341 kJ/mol, and the thermodynamic activation parameters ΔG #, ΔH #, and ΔS # were also calculated, revealing a potential application for the industry.  相似文献   

12.
Semiempirical, density functional theory (DFT), and ab initio calculations have been performed to assess the relative stabilities of 15 possible tautomer forms of neutral uric acid, and of the different urate mono‐ and dianion forms. These methods have also been used to compute ionization potentials (IPs) for uric acid and its derived anions. Overall, we have found that semiempirical calculations, in particular PM3, perform well as compared with B3LYP or MP2 computations toward these different structural and chemical properties of uric acid: the triketo form of uric acid is the most stable tautomer form of neutral uric acid. Three other tautomer forms are relatively close in energy, within the range 2–6 kcal/mol above the triketo form, with a mean energy deviation of only 1.3 kcal/mol between PM3 and DFT or ab initio results; the monoanion form of uric acid obtained by abstracting one proton in position 3 (denoted UAN) is the most stable form among all four possible urate monoanions both in gas phase and in solution; the dianion form of uric acid obtained by abstracting two protons, respectively, in positions 3 and 9 of uric acid (denoted UANN) is the most stable urate dianion form both in gas phase and in solution. However, these two most stable species do not have the lowest IPs in solution: among monoanions and dianions, respectively, the species with the lowest IPs are UAN and UANN. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

13.
A bacterial strain, SWU-4, capable of using benzothiophene (BT) as a sole carbon and energy source was isolated from a petroleum-contaminated site in Thailand and identified by 16S rRNA gene sequence analysis to be in the genus of Mycobacterium. The strain was Gram-positive, nonspore former, and grew at 50° C. Colonies of the strain on nutrient agar were rod-shaped, smooth with a convex surface, slightly mucoid, and yellow pigmented. The thermophilic Mycobacterium sp. strain SWU-4 rapidly degraded 2% (w/v) BT at 50°C. Interestingly, this strain was able to degrade a wide variety of organosulfur compounds including thiophene, bromo(α)thiophene, and 3-methylthiophene in liquid minimum medium at 50°C, which will be beneficial for industrial applications.  相似文献   

14.
A keratinolytic protease-producing microorganism was isolated from soybean paste waste and was identified as a strain of Bacillus sp. The keratinase was purified by polyethylene glycol precipitation and two successive column chromatographies with DEAE-Toyopearl 650C and Sephacryl S-200 HR. The purified enzyme had overall 11 purification folds with an 18% yield. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration on Sephacryl G-200 indicated that the purified enzyme was monomeric and had a molecular weight of 134 kDa. The optimum temperature and pH were 40°C and 7.0, respectively. This enzyme was completely inhibited by EDTA and EGTA, and it was restored by the addition of Ca+2 and Mg+2. These results suggested that it is a metalloprotease. The stimulated enzyme activity by reducing agents indicated that the reducing condition was important in the expression of the activity.  相似文献   

15.
Microalgae were screened from seawater for greenhouse gas CO2 fixation and d-lactic acid production by self-fermentation and tested for their growth rate, starch content, and conversion rate from starch into d-lactic acid. More than 300 strains were isolated, and some of them were found to have suitable properties for this purpose. One of the best strains, Nannochlorum, sp. 26A4, which was isolated from Sakito Island, had a starch content of 40% (dry weight), and a conversion rate from consumed starch into d-lactic acid of 70% in the dark under anaerobic conditions. The produced d-lactic acid showed a high optical purity compared with the conventional one. The proposed new d-lactic acid production system using Nannochlorum sp. 26A4 should also be an effective technology for greenhouse gas CO2 fixation and/or conversion into industrial raw materials.  相似文献   

16.
A new metabolite,named seimatoric acid(1),representing a new oxobutanoic acid derivative has been isolated from Seimatosporium sp., in addition to four known compounds viz.,2-hydroxymethyl-4β,5α,6β-trihydroxycyclohex-2-enone(2),(-)-phyllostine(3),(+)-epiepoxydon(4) and(+)-epoxydon monoacetate(5).Similarly one new benzoic acid derivative,named colletonoic acid(6) was isolated from the ethyl acetate fraction of Colletotrichum sp.The structures of the new compounds were elucidated by detailed ~1 H NMR,~(13)C NMR,COSY,HMQC.HMBC spectroscopic analysis,and HR-E1-MS.Seimatoric acid(1)was also isolated from another taxonomical unidentified fungal strain 4295 in ourgroup.The structures of the known compounds were elucidated by their spectral data comparison to literature data.Preliminary studies showed that colletonoic acid(6) showed good antibacterial,antifungal,and antialgal activities.  相似文献   

17.
A statistical approach, response surface methodology (RSM), was used to study the production of extracellular protease fromBacillus sp., which has properties of immense industrial importance. The most influential parameters for protease production obtained through the method of testing the parameters one at a time were starch, soybean meal, CaCl2, agitation rate, and inoculum density. This method resulted in the production of 2543 U/mL of protease in 48 h fromBacillus sp. Based on these results, face-centered central composite design falling under RSM was employed to further enhance protease activity. The interactive effect of the most influential parameters resulted in a 1.50-fold increase in protease production, yielding 3746 U/mL in 48 h. Analysis of variance showed the adequacy of the model and verification experiments confirmed its validity. On subsequent scale-up in a 30-L bioreactor using conditions optimized through RSM, 3978 U/mL of protease was produced in 18 h. This clearly indicated that the model remained valid even on a large scale. RSM is a quick process for optimization of a large number of variables and provides profound insight into the interactive effect of various parameters involved in protease production.  相似文献   

18.
3,5-Dibromo-2-methoxybenzoic acid was isolated from sea spongeDidiscus sp. The structure of the title compound was established by spectral methods, by X-ray diffraction analysis, and by comparing with a synthetic sample prepared from salicylaldehyde. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2363–2365, November, 1998.  相似文献   

19.
制备了一种新颖的Nation-离子液体一多壁碳纳米管复合膜修饰电极,并研究了抗坏血酸(AA)、多巴胺(DA)和尿酸(uA)在该修饰电极上的电化学行为.该修饰电极结合了多壁碳纳米管良好的导电性、离子液体优良的催化性能及Nation的高选择性等优点,对AA、DA和UA的氧化具有很好的催化和分离效果,实现了AA、DA和UA的同时测定.在三者共存体系中,AA和DA、DA和UA的氧化峰电位差分别为148和167mV.对AA、DA和UA的同时检测,线性范围分别为5-3200、1~1100和1-300gmol/L,检出限分别为1.66、0.33和0.33gmol/L.该修饰电极选择性好、稳定性高、重现性好,有望用于实际样品中AA、DA和UA的同时检测.  相似文献   

20.
Carnitine acetyltransferase was purified from the citric acid producingA. niger mycelium with a protein band showing a relative molecular weight of 77,000 and a pH optimum of 7.3. TheK m values for the purified enzyme for acetyl-CoA and for carnitine were 0.1 mM and 1 mM, respectively. Carnitine acetyltransferase was located both in the mitochondria and in the cytosol. Both mitochondrial and cytosolic enzyme were purified using ammonium sulfate precipitation, Mono Q and Superose 12 separation. Regarding the localization, except for maximum velocity, there were no differences observed in substrate specificity and inhibition. Inhibition of the enzyme with micromolar concentrations of Cu2+ could contribute to a greater citric acid biosynthesis. Carnitine acetyltransferase can be considered as an enzyme necessary for the transport of acetyl groups through mitochondrial membrane in both directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号