首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High resolution particle image velocimetry is used to measure the turbulent velocity field for fully developed flow (Re = 2,872) in an enclosed channel. Photographs of particle displacement are obtained in a plane that is parallel to the flow and perpendicular to the walls. These are analyzed to give simultaneous measurements of two components of the velocity at more than 10,000 points. Maps of velocity vectors, spanwise vorticity and Reynolds stress reveal structural aspects of the turbulence. In particular, internal shear layers are observed, in agreement with predictions of direct numerical simulation. Ensemble-averaging of a number of photographs yields statistical properties of the velocity in good agreement with laser-Doppler velocimeter measurements, and with direct numerical simulations.  相似文献   

2.
A new and unique high-resolution image acquisition system for digital particle image velocimetry (DPIV) in turbulent flows is used for the measurement of fully-developed turbulent pipe flow at a Reynolds number of 5300. The flow conditions of the pipe flow match those of a direct numerical simulation (DNS) and of measurements with conventional (viz., photographic) PIV and with laser-Doppler velocimetry (LDV). This experiment allows a direct and detailed comparison of the conventional and digital implementations of the PIV method for a non-trivial unsteady flow. The results for the turbulence statistics and power spectra show that the level of accuracy for DPIV is comparable to that of conventional PIV, despite a considerable difference in the interrogation pixel resolution, i.e. 32 × 32 (DPIV) versus 256 × 256 (PIV). This result is in agreement with an earlier analytical prediction for the measurement accuracy. One of the advantages of DPIV over conventional PIV is that the interrogation of the DPIV images takes only a fraction of the time needed for the interrogation of the PIV photographs.  相似文献   

3.
The multi-plane stereo particle image velocimetry (MSPIV) technique has been applied to an investigation of the spatial and temporal development of turbulent spots in a laminar flat-plate boundary-layer flow with a slight adverse pressure gradient. On the basis of a large number of evaluated instantaneous 3- and 2-component velocity-vector fields, measured synchronously and separated in space, or with different time separations in one or two planes, the technique enabled the determination of several statistical quantities of fluid mechanical significance. The shape and role of coherent substructures for the growth and turbulent mixing of the spot were the focus of this investigation.List of symbols x, y, z stream-, normal-, and spanwise coordinate - U freestream velocity (U=7 m/s) - Re Reynolds number, =Rex1/2 - u, v, w instantaneous velocity components - u, v, w fluctuation velocity components - Q-1,...,4 quadrants of Reynolds stress uv' - PDF probability density function - Rii space–(time)-correlation function - wavelength of laser light - TE trailing edge of turbulent spot - LE leading edge of turbulent spot  相似文献   

4.
The modification of the near-wall structure is very important for the control of wall turbulence. To ascertain the effect of near-wall modulation on the viscoelastic drag-reduced flow, the modified characteristics of a surfactant solution channel flow were investigated experimentally. The modulation was conducted on the boundary of the channel flow by injecting water from the whole surface of one side of the channel wall. The diffusion process of the injected water was observed by using the planar laser-induced fluorescence technique. The velocity statistics and characteristic structure including the spatial distributions of instantaneous streamwise velocity, swirling strength, and Reynolds shear stress were analyzed based on the velocity vectors acquired in the streamwise wall-normal plane by using the particle imaging velocimetry technique. The results indicated that the disturbance of the injected water was constricted within a finite range very near the dosing wall, and the Reynolds shear stress was increased in this region. However, the eventual drag reduction rate was found to be increased due to a relatively large decrement of viscoelastic shear stress in this near-wall region. Moreover, the flow structure under this modulation presented obvious regional characteristics. In the unstable disturbed region, the mixing of high-speed and low-speed fluids and the motions of ejection and sweep occurred actively. Many clockwise vortex cores were also found to be generated. This characteristic structure was similar to that in the ordinary turbulence of Newtonian fluid. Nevertheless, outside this disturbed region, the structure still maintained the characteristics of the drag-reduced flow with non-Newtonian viscoelastic additives. These results proved that the injected Newtonian fluid associated with the modified stress distribution creates a diverse characteristic structure and subsequent enhanced drag reduction. This investigation can provide the experimental basis for further study of turbulence control.  相似文献   

5.
Laser-induced fluorescent dye visualization and image correlation velocimetry were employed to delineate near-wall turbulent structures in a pipe flow. The sweeping and ejection events near the wall and the downstream evolution of a large-scale eddy structure rotating in a counter-clockwise direction were clearly reflected in the instantaneous fluctuating velocity fields. This eddy structure was found to form mostly in the logarithmic region and to dominate the flow structures there, while the ejection and sweeping events in the log layer were greatly influenced by the existence of the large-scale eddy structure. Received: 29 January 2001 / Accepted: 22 October 2001  相似文献   

6.
In this article, a multiplane stereo-particle image velocimetry (PIV) system was implemented and validated to measure the three-component acceleration field in a plane of turbulent flows. The employed technique relies on the use of two stereoscopic particle image velocimetry (SPIV) systems to measure pairs of velocity fields superimposed in space but shifted in time. The time delay between the two velocity fields enables the implementation of a finite difference scheme to compute temporal derivatives. The use of two synchronized SPIV systems allows us to overcome the limited acquisition rate of PIV systems when dealing with highly turbulent flows. Moreover, a methodology based on the analysis of the spectral error distribution is described here to determine the optimal time delay to compute time derivatives. The present dual-time SPIV arrangement and the proposed analysis method are applied to measure three-component acceleration fields in a cross section of a subsonic plane turbulent mixing layer.  相似文献   

7.
This paper describes an experimental development for temporal and spatial reconstruction of continuously varying flow fields by means of digital cinematographic particle image velocimetry (PIV). The system uses a copper-vapor laser illumination synchronized with a high-speed camera, and continuously samples at 250 fps to measure transient and non-periodic turbulent flows with relatively low frequencies, i.e., the surf zone turbulence produced by depth-limited wave break in a long laboratory flume. The use of the developed PIV system comprehensively records the temporal development of both phase-averaged and instantaneous turbulent vortex flows descended from the breaking waves to the bottom. Also, the measured power spectra show harmonic frequencies, ranging from the orbital frequency of 0.5 Hz up to the order of 5 Hz, and the well-known −5/3 dependence upon the turbulence fluctuation frequencies thereafter. Received: 2 December 1999/Accepted: 6 September 2000  相似文献   

8.
The particle image velocimetry technique was used to measure characteristics of a turbulent flow over a transitionally-rough fixed bed in an open-channel flow. These conditions are typical of flows encountered in sediment transport problems. Measurements obtained with this technique were used to investigate the distributions of velocities, turbulence intensities, Reynolds stress, and third- and fourth-order moments in a region above y + = 10. The present results are in good agreement to those previously obtained on smooth walls and provide further evidence that PIV can be applied successfully to investigate turbulence in open-channel flows over a rough bed.  相似文献   

9.
In this paper, statistical post-processing of measured velocity, dissipation rate and turbulence data is performed to establish whole-field distributions of entropy production within a channel. Thermal irreversibilities arising from temperature variations were not included in the study, as the experiments were conducted between unheated plexiglass plates in an essentially isothermal water tunnel. Unlike velocity or temperature, the measurement of entropy cannot be performed directly, so entropy production is measured indirectly through spatial differencing of measured velocities in large eddy PIV. In contrast to single-point methods of anemometry, large eddy PIV enables whole-field, time-varying measurements of the velocity field, which can be post-processed to yield entire spatial variations of the entropy production rate. An uncertainty analysis is performed to estimate measurement uncertainties with the new experimental technique. The uncertainties are decomposed into systematic and random components, including a propagated uncertainty, due to spatial differencing of the velocity field. Close comparisons between measured results of turbulence dissipation and direct numerical simulations provide useful verification of the formulation, before post-processed results of dissipation rates are used to determine entropy production within a channel.  相似文献   

10.
A new stereoscopic approach based on telecentric lenses is introduced. The method offers in-focus imaging at high viewing angles (highly tilted object planes) with diminishing systematic image distortion. In single-view particle image velocimetry (PIV) applications telecentric lenses can be used to eliminate projection errors. Normal and oblique viewing are tested using a commercial telecentric lens with particle image velocimetry.  相似文献   

11.
 The technical basis and system set-up of a dual-plane stereoscopic particle image velocimetry (PIV) system, which can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously, is summarized. The simultaneous measurements were achieved by using two sets of double-pulsed Nd:Yag lasers with additional optics to illuminate the objective fluid flow with two orthogonally linearly polarized laser sheets at two spatially separated planes, as proposed by Kaehler and Kompenhans in 1999. The light scattered by the tracer particles illuminated by laser sheets with orthogonal linear polarization were separated by using polarizing beam-splitter cubes, then recorded by high-resolution CCD cameras. A three-dimensional in-situ calibration procedure was used to determine the relationships between the 2-D image planes and three-dimensional object fields for both position mapping and velocity three-component reconstruction. Unlike conventional two-component PIV systems or single-plane stereoscopic PIV systems, which can only get one-component of vorticity vectors, the present dual-plane stereoscopic PIV system can provide all the three components of the vorticity vectors and various auto-correlation and cross-correlation coefficients of flow variables instantaneously and simultaneously. The present dual-plane stereoscopic PIV system was applied to measure an air jet mixing flow exhausted from a lobed nozzle. Various vortex structures in the lobed jet mixing flow were revealed quantitatively and instantaneously. In order to evaluate the measurement accuracy of the present dual-plane stereoscopic PIV system, the measurement results were compared with the simultaneous measurement results of a laser Doppler velocimetry (LDV) system. It was found that both the instantaneous data and ensemble-averaged values of the stereoscopic PIV measurement results and the LDV measurement results agree well. For the ensemble-averaged values of the out-of-plane velocity component at comparison points, the differences between the stereoscopic PIV and LDV measurement results were found to be less than 2%. Received: 18 April 2000/Accepted: 2 February 2001  相似文献   

12.
An experimental investigation of a high Reynolds number flow (Re = 320 000) of a dilute liquid-solid mixture (<1% by volume) was conducted. The turbulent motion of both the liquid phase (water) and particles (0.5, 1, and 2 mm glass beads) was evaluated in an upward pipe flow using a particle image/tracking velocimetry (PIV/PTV) technique. Results show that the Eulerian mean axial velocity of the glass beads is lower than that of the liquid phase in the central region but higher in the near-wall region. Moreover, the presence of the coarse particles has a negligible effect on the turbulence intensity of the liquid phase. Particles show higher streamwise and radial fluctuations than the liquid-phase at the tested conditions. The profiles of particle concentration across the pipe radius show almost constant concentration in the core of the pipe with a decrease towards the near wall region for 0.5 and 1 mm particles. For the 2 mm particles, a nearly linear concentration gradient from centre to the pipe wall is observed. The results presented here provide new information concerning the effect of a dispersed particulate phase on the turbulence modulation of the liquid carrier phase, especially at high Reynolds numbers. The present study also demonstrates how correlations developed to determine if particles cause turbulence attenuation/augmentation are not applicable for solid-liquid flows at high Reynolds numbers. Finally, the importance of particle-fluid slip velocity on fluid phase turbulence modulation is illustrated.  相似文献   

13.
A holographic particle image velocimetry system for investigating hairpin vortices, artificially generated in a subcritical plane Poiseuille air flow, is presented. The optical setup is a modified version of the hybrid scheme, previously employed in turbulent water flows. Accordingly, separate reconstruction of holograms, successively recorded on the same photoplate, is provided by using two reference beams. The positioning of the photoplate within the image of the sample volume accompanied by special alignment procedures, minimizes the apparent displacement caused by the misalignment of the reconstruction waves. A novel method is employed for detecting in-focus particles. Testing the system with a fixed 5 μm diameter wire, results in a corresponding 3D wire image having a diameter of ≈25 μm. Finally, the instantaneous topology and 3D distribution of the two velocity components associated with the hairpin vortex are presented.  相似文献   

14.
Measurements using stereo particle image velocimetry are presented for a developing turbulent boundary layer in a wind tunnel with a Mach 2.75 free stream. As the boundary layer exits from the tunnel nozzle and moves through the wave-free test section, small initial departures from equilibrium turbulence relax, and the boundary layer develops toward the equilibrium zero-pressure-gradient form. This relaxation process is quantified by comparison of first and second order mean, fluctuation, and gradient statistics to classical inner and outer layer scalings. Simultaneous measurement of all three instantaneous velocity components enables direct assessment of the complete turbulence anisotropy tensor. Profiles of the turbulence Mach number show that, despite the M = 2.75 free stream, the incompressibility relation among spatial gradients in the velocity fluctuations applies. This result is used in constructing various estimates of the measured-dissipation rate, comparisons among which show only remarkably small differences over most of the boundary layer. The resulting measured-dissipation profiles, together with measured profiles of the turbulence kinetic energy and mean-flow gradients, enable an assessment of how the turbulence anisotropy relaxes toward its equilibrium zero-pressure-gradient state. The results suggest that the relaxation of the initially disturbed turbulence anisotropy profile toward its equilibrium zero-pressure-gradient form begins near the upper edge of the boundary layer and propagates downward through the defect layer.  相似文献   

15.
The turbulent flow over a circular cavity with an aspect ratio of D/H = 2 is investigated by multi-planar stereoscopic particle image velocimetry and with tomographic particle image velocimetry (PIV). The main aim of the study is the flow topology and the turbulent structure of the asymmetrical flow pattern that forms inside the cavity at these specific conditions. The flow field is measured in the vertical symmetry plane to describe the overall recirculation pattern in the cavity and the turbulent shear layer developing from the separation point. In this specific regime the shear layer fluctuations are recognized as those caused by instabilities together with the effect of the incoming boundary layer turbulence. Additional observations performed at several wall-parallel planes at different height inside the cavity allow to further evaluate the secondary flow circulation generated by this asymmetric regime. The observed flow pattern consists of a steady vortex, occupying the entire cavity volume and placed diagonally inside the cavity such to entrain the external flow from one side, capture it into a circulatory motion and eject it from the opposite side of the cavity. The spatial distribution of the turbulent fluctuations also reveals the same structure. The tomographic PIV measurement returns a visual inspection to the instantaneous three-dimensional structure of the turbulent fluctuations, which at the investigated height exhibit a low level of coherence with slightly elongated vortices in the recirculating flow inside the cavity.  相似文献   

16.
Tomographic particle image velocimetry (Tomo-PIV) was applied on a turbulent round air jet to quantitatively assess the accuracy of velocity gradients obtained in the self-similar turbulent region. The jet Reynolds number based on the nozzle diameter (d) was Red = 3000. Mean velocity, turbulent intensities, and Reynolds shear stress at the center plane of the jet were measured. In addition, statistical results of Tomo-PIV along the axial direction were assessed by performing a separate set of two-dimensional two-component PIV experiments on a “side view” plane along the jet axis. Moreover, the probability distribution functions of four components of the measured velocity gradients in the axial and radial directions were validated by these “side view” planar PIV data. The root mean square of the velocity divergence values relative to the norm of the velocity gradient tensor was 0.36. Furthermore, the on- and off-diagonal components of the velocity gradients satisfied the axisymmetric isotropy conditions. The divergence error in the data affected only areas with low gradient magnitude. Therefore, turbulent structures in the regions with intense vorticity and dissipation can be closely monitored. On this basis, the joint pdfs of the invariants of the velocity gradient and strain and rotation tensor rates were produced and compared well with those in isotropic turbulence studies.  相似文献   

17.
18.
Stereo particle image velocimetry (PIV) has been employed to study a vortex generated via tangential injection of water in a 2.25 inch (57 mm) diameter pipe for Reynolds numbers ranging from 1,118 to 63,367. Methods of decreasing pipe-induced optical distortion and the PIV calibration technique are addressed. The mean velocity field analyses have shown spatial similarity and revealed four distinct flow regions starting from the central axis of rotation to the pipe wall in the vortex flows. Turbulence statistical data and vortex core location data suggest that velocity fluctuations are due to the axis of the in-line vortex distorting in the shape of a spiral.  相似文献   

19.
The relationship between the bursting event and the low/high-speed streak in the logarithmic law (log-law) region of a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.  相似文献   

20.
The character of transitional capillary flow is investigated using pressure-drop measurements and instantaneous velocity fields acquired by microscopic PIV in the streamwise–wall-normal plane of a 536 μm capillary over the Reynolds-number range 1,800 ≤ Re ≤ 3,400 in increments of 100. The pressure-drop measurements reveal a deviation from laminar behavior at Re = 1,900 with the differences between the measured and the predicted laminar-flow pressure drop increasing with increasing Re. These observations are consistent with the characteristics of the mean velocity profiles which begin to deviate from the parabolic laminar profile at Re = 1,900, interpreted as the onset of transition, by becoming increasingly flatter and fuller with increasing Re. A fully-turbulent state is attained at Re ≅ 3,400 where the mean velocity profile collapses onto the mean profile of fully-developed turbulent pipe flow from an existing direct numerical simulation at Re = 5,300. Examination of the instantaneous velocity fields acquired by micro-PIV in the range 1,900 ≤ Re < 3,400 reveal that transitional flows at the microscale are composed of a subset of velocity fields illustrating a purely laminar behavior and a subset of fields that capture significant departure from laminar behavior. The fraction of velocity fields displaying non-laminar behavior increases with increasing Re, consistent with past observations of a growing number of intermittent turbulent spots bounded by nominally laminar flow in macroscale pipe flow with increasing Re. Instantaneous velocity fields that are non-laminar in character consistently contain multiple spanwise vortices that appear to streamwise-align to form larger-scale interfaces that incline slightly away from the wall. The characteristics of these “trains” of vortices are reminiscent of the spatial features of hairpin-like vortices and hairpin vortex packets often observed in fully-turbulent wall-bounded flow at both the macro- and micro-scales. Finally, single-point statistics computed from the non-laminar subsets at each transitional Re, including root-mean-square velocities and the Reynolds shear stress, reveal a gradual and smooth maturation of the patches of disordered motion toward a fully-turbulent state with increasing Re.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号