首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method is presented for the determination of Au and Pt in biological materials based on neutron activation analysis with radiochemical separation of gold. Separation of gold by electrolytic deposition on a niobium cathode ascertains the highest radiochemical purity without any interference from calcium or other major elements. With199Au as indicator for platinum the gold content of the sample not only strongly affects the limit of detection, but also causes interference by double neutron capture. Replicate analyses of BCR Certified Reference Materials No. 184, 185 and 186 were carried out.Presented at the MTAA-8 Conference, September 16–20, 1991, Vienna, Austria.  相似文献   

2.
In this work, in situ AFM measurements with simultaneously electrochemical characterization were developed to study the mechanisms of both polypyrrole (PPy) and PPy/Au composite deposition. The nanoscale information derived from the in situ AFM images associated with theoretical simulation from the measured current–time transient (i–t) reveals that Au nanoparticles with negatively charged carboxylic groups can be the nuclei by both adsorption on the electrode surface and doping on PPy for the polymerization, and thus has faster nucleation and growth rate than Py alone at the early polymerization stage. The PPy/Au deposition shows parallel nucleation processes of Au nanoparticle and Py, and an instantaneous 3D nucleation mode. The work not only provides fundamental insights for PPy/Au nanocomposite deposition process, but also optimization approaches to fabricate a superior PPy/Au film with favorable features for greater potential applications.  相似文献   

3.
The mechanism of anodic dissolutions of p-Si single crystals in CH3OH–LiCl and CH3OH–LiCl–HCl solutions was investigated by means of the following electrochemical methods: linear sweep voltammetry, the potentiostatic transient technique and XPS surface analysis. The dissolution of p-Si proceeds by a two-step mechanism with the creation of a Si(II) surface intermediate. At low anodic overvoltage the dissolution proceeds with the formation of porous silicon, probably through the reaction: 2Si(II)Si+Si(IV). Structural etching of the single crystals surface was observed at high anodic overvoltage (E>2 V). At this potential range, silicon dissolves with the formation of a Si(IV) soluble product. Electrolysis of the methanol solvent containing Si(IV) in the cell p-Si|CH3OH–LiCl–Si(IV)|M, where M=Pt, Cu or 18/8 stainless steel, leads to the deposition of an amorphous organosilicon layer on the cathode. The analysis of the deposit performed by means of XPS, FTIR and SEM allows determination of the morphology and composition of the film. The layer consists of Si–OCH3 compounds and can be created only in methanol solvent. The film is unstable in a humid atmosphere and undergoes transformation into a Si–OH layer.Contribution to the 3rd Baltic Conference on Electrochemistry, Gdansk-Sobieszewo, Poland, 23–26 April 2003Dedicated to the memory of Harry B. Mark, Jr. (28 February 1934–3 March 2003)  相似文献   

4.
We propose a general nucleation and growth model that can explain the mechanism of the formation of CoPt(3)/Au, FePt/Au, and Pt/Au nanodumbbells. Thus, we found that the nucleation event occurs as a result of reduction of Au(+) ions by partially oxidized surface Pt atoms. In cases when Au(3+) is used as a gold precursor, the surface of seeds should be terminated by ions (e.g., Co(2+), Pb(2+)) that can reduce Au(3+) to Au(+) ions, which can further participate in the nucleation of gold domain. Further growth of gold domain is a result of reduction of both Au(3+) and Au(+) by HDA at the surface of gold nuclei. We explain the different ability of CoPt(3), Pt, and FePt seeds to serve as a nucleation center for the reduction of gold and further growth of dumbbells. We report that the efficiency and reproducibility of the formation of CoPt(3)/Au, FePt/Au, and Pt/Au dumbbells can be optimized by the concentration and oxidation states of the surface ions on metallic nanocrystals used as seeds as well as by the type of the gold precursor.  相似文献   

5.
在成功实现半导体硅表面电沉积致密金膜的柠檬酸盐镀金实际应用体系中,运用循环伏安和电位阶跃法研究了Au在n型Si(111)电极表面的电沉积过程和成核机理.结果表明,在该体系中, Au在Si表面呈现不可逆电极过程,成核过电位达到250 mV;根据Cottrell方程求得扩散系数D = (1.81 ± 0.14) × 10-4 cm2·s-1;运用Scharifker-Hills (SH)理论模型对比分析拟合实验结果,表明Au在n型Si表面遵循扩散控制下的三维连续成核机理;通过扫描电子显微镜观察Au初期成核、生长形貌,进一步证实了Au的三维连续成核机制,并讨论了阶跃电位和阶跃时间对Au核形貌和密度的影响.  相似文献   

6.
We use colloidal Au to enhance the DNA immobilization amount on a gold electrode and ultimately lower the detection limit of our electrochemical DNA biosensor. Self-assembly of approximately 16-nm diameter colloidal Au onto a cysteamine modified gold electrode resulted in an easier attachment of an oligonucleotide with a mercaptohexyl group at the 5′-phosphate end, and therefore an increased capacity for nucleic acid detection. Quantitative results showed that the surface densities of oligonucleotides on the Au colloid modified gold electrode were approximately (1–4)×1014 molecules cm−2. Hybridization was induced by exposure of the ssDNA-containing gold electrode to ferrocenecarboxaldehyde labeled complementary ssDNA in solution. The detection limit is 5×10−10 mol l−1 of complementary ssDNA, which is much lower than our previous electrochemical DNA biosensors. The Au nanoparticle films on the Au electrode provide a novel means for ssDNA immobilization and sequence-specific DNA detection.  相似文献   

7.
The nucleation and growth of copper crystals on a glassy carbon electrode are investigated at different constant overpotentials. Current transients are recorded and the number of copper nuclei is microscopically registered. The experimental data for the growth current are interpreted according to the theories of progressive and instantaneous nucleation and information is obtained on the stationary nucleation rate, the saturation nucleus number density and the exchange current density at the crystals–solution interface boundary.  相似文献   

8.
The nucleation and growth of polythiophene films on gold electrodes has been studied using potentiostatic steps. The mechanism has been deduced and estimates made of the kinetic parameters. Dissolution of the gold substrate at potentials where thiophene polymerisation occurs is suppressed by the initial rapid formation of a monolayer of polymer. The data indicate that formation of bulk film occurs by the instantaneous nucleation and three-dimensional growth of polymer on top of this monolayer. Rate constants for growth parallel to the surface on the bare gold substrate and the covering polymer layer are surprisingly very similar. Growth perpendicular to the surface is slightly more rapid, typically by a factor of 1.5–3, although it is less dependent on potential. The high density of nuclei results in their overlap at an early stage, after which growth is only possible perpendicular to the surface. Within a narrow potential range, the observation of maxima and minima in current-time transients is interpreted in terms of the “death” and “rebirth” of growing centres.  相似文献   

9.
The kinetics and mechanism of the electrooxidation of gold and thiocarbamide in sulfuric acid solutions of thiocarbamide (TC) have been investigated. The potentials for the oxidation of gold in TC solutions to [Au(TC)2]+ ads and [Au(TC)3]3+ ads are 0.132 and 0.561 V (relative to the standard silver chloride electrode). The electrooxidation of thiocarbamide in sulfuric acid solution is characterized by two maximums on voltammograms at 0.983 V (formation of formamidine disulfide, FAD) and 1.437 V (oxidation of FAD, sulfides and hydrosulfides of gold(I)). The calculated rate constants for the electrosolution of gold at the maximum current of the voltammogram is k 1 = 1.15·10–5 cm/s and at the minimum current is k 2 = 3.13·10–6 cm/s in sulfuric solutions of TC. A mechanism is proposed for the electrosolution of gold and TC in sulfuric acid solutions of thiocarbamide.  相似文献   

10.
Silver crystal nucleation is studied in AgNO3 melts containing Pb(NO3)2 and HNO3 at 250°C by the galvanostatic method. The maximum nucleation overpotential is higher as compared with pure AgNO3 and the exchange current of silver deposition-dissolution is lower. It is found that the added substances and the products of their reactions with the melt are strong oxidants, take part in the electrochemical processes, and induce passivation of the cathodic substrate and the surface of growing silver crystals. Substantial changes in the morphology of the cathodic deposit and certain changes in the silver lattice parameter were observed depending on the oxidant content.  相似文献   

11.
A formula derived for an ion–metal electrode yields the near-electrode concentration of ions-reactants, the concentration overvoltage, and the charge transfer overvoltage from the overvoltage and current density (at the known exchange current density) without explicit use of the diffusion coefficient or the limiting diffusion current.  相似文献   

12.
A stable quercetin–thioglycolic acid-modified gold electrode (Qu–TCA/Au) was prepared as a self-assembled monolayer (SAM) and its electrochemical behavior was investigated by electrochemical methods. In 0.05-M phosphate buffer solution (pH 7.0) quercetin exhibits quasi-reversible signals at the Qu–TCA/Au electrode. The stability of the quercetin-modified gold electrode is very good. The quercetin self-assembled monolayer is an effective mediator for the oxidation of dopamine, which was investigated by cyclic voltammetry and differential pulse voltammetry. Ascorbic acid does not interfere with determination of dopamine at an electrode modified with a mixture of quercetin–thioglycolic acid and quercetin–11-mercaptoundecanoic acid. This modification allows dopamine to be determined in the presence of ascorbic acid in the range from 3×10–5 to 3×10–4 M. The detection limit is 1×10–6 M. Scanning electrochemical microscopy (SECM) was employed to study the electrochemical performances of the modified gold electrode indicating different feedback modes at differently modified surfaces.  相似文献   

13.
Peptide sequences that can discriminate between gold facets under aqueous conditions offer a promising route to control the growth and organisation of biomimetically-synthesised gold nanoparticles. Knowledge of the interplay between sequence, conformations and interfacial properties is essential for predictable manipulation of these biointerfaces, but the structural connections between a given peptide sequence and its binding affinity remain unclear, impeding practical advances in the field. These structural insights, at atomic-scale resolution, are not easily accessed with experimental approaches, but can be delivered via molecular simulation. A current unmet challenge lies in forging links between predicted adsorption free energies derived from enhanced sampling simulations with the conformational ensemble of the peptide and the water structure at the surface. To meet this challenge, here we use an in situ combination of Replica Exchange with Solute Tempering with Metadynamics simulations to predict the adsorption free energy of a gold-binding peptide sequence, AuBP1, at the aqueous Au(111), Au(100)(1 × 1) and Au(100)(5 × 1) interfaces. We find adsorption to the Au(111) surface is stronger than to Au(100), irrespective of the reconstruction status of the latter. Our predicted free energies agree with experiment, and correlate with trends in interfacial water structuring. For gold, surface hydration is predicted as a chief determining factor in peptide–surface recognition. Our findings can be used to suggest how shaped seed-nanocrystals of Au, in partnership with AuBP1, could be used to control AuNP nanoparticle morphology.  相似文献   

14.
The reversible assembly of β-cyclodextrin-functionalized gold NPs (β-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the β-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of β-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and β-CD-capped Au NPs. As a result, the potential-induced uptake and release of β-CD Au NPs to and from the surface is accomplished. The competitive binding of β-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of β-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.  相似文献   

15.
The analytical potential of a fast neutron reactor has been studied. The maximum density of the neutron flux is 2.5·1015 cm–2·s–1 at a maximum energy of 450 keV. The determining reaction for activation analysis at this reactor is an (n, n) reaction. The possibility of selectively determining Pb, Hg, Cd, Au, Ag and other elements at a level of 10–5–10–8% is demonstrated. This activation technique allows rapid determination of these elements.  相似文献   

16.
Kinetics of cathodic processes in an ammonia–citrate electrolyte for depositing Ni–Mo alloys is studied. During electrolysis at potentials of up to –0.92 V (NHE) the cathode surface becomes covered by a film consisting of compounds of molybdenum of lower valencies. The beginning of the alloy deposition, which occurs at potentials more negative than –0.92 V, barely affects the partial density of the current of reduction of molybdate ions.  相似文献   

17.
A photochemical reduction of Au3+ with continuous 250-400 nm excitation is studied in ethylene glycol, and poly(vinylpyrrolidone) (PVP) is used as a capping material. After the absorption of Au3+ disappears, excitation is stopped. The surface plasmon absorption of gold as well as the thermal reappearance of the Au3+ absorption are found to increase as a function of time. The rates of these changes are studied as a function of the mole fraction of ethylene glycol in water. Experimental results show that a small amount of ethylene glycol increases the formation of gold nanoparticles and decreases the reformation of the Au3+ absorption after irradiation. Increasing the glycol concentration first increases the rate of formation of gold nanoparticles to a maximum at a mole fraction 0.40. As the glycol concentration is further increased, the rate of formation of the gold nanoparticles and the rate of re-formation of Au3+ decrease. A mechanism is proposed that involves the reduction of the excited Au3+ to Au2+ by ethylene glycol. This is followed by the disproportionation of Au2+ to Au3+ and Au1+. Both the reduction of Au1+ by ethylene glycol and its disproportionation lead to the formation of Au0, which upon nucleation and growth form Au nanoparticles.  相似文献   

18.
The structure of gold deposits produced by electrolysis of molten eutectic NaCl-KCl-CsCl at 500–700°C in an inert atmosphere is studied. The initial process on the gold cathode is the epitaxial growth of a layer up to 3 μm thick with a smoothed surface and a considerably later growth of grain boundaries. Gradually, on the protruding parts of deposit, the growth of dendrites starts. The dendrites are the major form of gold deposits. Typical gold dendrites are two-dimensional 2D〈112〉 and 2D〈112〉–〈110〉 and three-dimensional 3D〈100〉. Upon supplying air into the atmosphere above the melt at high current densities at the initial period there appears a powder comprising particles of a rounded twisted shape. Probable mechanisms leading to the formation of the “rounded” powder are discussed.  相似文献   

19.
葡萄糖在纳米金修饰金电极上电化学行为研究   总被引:1,自引:0,他引:1  
利用电还原氯金酸制备了纳米金(Nano-gold,NG)修饰Au电极。该电极对葡萄糖有催化作用,可能是由于纳米金降低了OH-表面吸附能,增加了OH-在电极表面的吸附量。通过循环伏安法研究了扫描速度、温度、本体浓度和溶液pH值对葡萄糖氧化的影响。  相似文献   

20.
The feasibility of performing immunoassays with colloidal gold labels and detection of198Au by neutron activation has been demonstrated with measurements of human immunoglobulin and of serum antibodies to human immunodeficiency virus type 1. The detection sensitivity achieved after activation in a high flux reactor or with a water moderated252Cf source, by gamma-counting or by autoradiography, is similar to the sensitivity obtained with absorbance measurements in the more common enzyme immunoassays. The reactor based neutron activation assay allows detection of 10–16 mol of analyte in routine operation with possible extension to 10–20 mol. The sensitivity with the 1.3 Ci252Cf source is limited to about 10–15 mol. The practical limitations of the assay's sensitivity at this point are due to background signals from reagents and/or nonspecific binding of the gold labeled reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号