首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we consider a viscous compressible model of plasma and semiconductors, which is expressed as a compressible Navier‐Stokes‐Poisson equation. We prove that there exists a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces in bounded domain, provided that the ratio of the electron/ions mass is appropriately small. Moreover, the zero‐electron‐mass limit of the strong solutions is rigorously verified. The main idea in the proof is to split the original equation into 4 parts, a system of stationary incompressible Navier‐Stokes equations with large forces, a system of stationary compressible Navier‐Stokes equations with small forces, coupled with 2 Poisson equations. Based on the known results about linear incompressible Navier‐Stokes equation, linear compressible Navier‐Stokes, linear transport, and Poisson equations, we try to establish uniform in the ratio of the electron/ions mass a priori estimates. Further, using Schauder fixed point theorem, we can show the existence of a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces. At the same time, from the uniform a priori estimates, we present the zero‐electron‐mass limit of the strong solutions, which converge to the solutions of the corresponding incompressible Navier‐Stokes‐Poisson equations.  相似文献   

2.
In this paper we study infinite‐dimensional, second‐order Hamilton‐Jacobi‐Bell‐man equations associated to the feedback synthesis of stochastic Navier‐Stokes equations forced by space‐time white noise. Uniqueness and existence of viscosity solutions are proven for these infinite‐dimensional partial differential equations. © 2005 Wiley Periodicals, Inc.  相似文献   

3.
We present new exact solutions and reduced differential systems of the Navier‐Stokes equations of incompressible viscous fluid flow. We apply the method of semi‐invariant manifolds, introduced earlier as a modification of the Lie invariance method. We show that many known solutions of the Navier‐Stokes equations are, in fact, semi‐invariant and that the reduced differential systems we derive using semi‐invariant manifolds generalize previously obtained results that used ad hoc methods. Many of our semi‐invariant solutions solve decoupled systems in triangular form that are effectively linear. We also obtain several new reductions of Navier‐Stokes to a single nonlinear partial differential equation. In some cases, we can solve reduced systems and generate new analytic solutions of the Navier‐Stokes equations or find their approximations, and physical interpretation.  相似文献   

4.
The zero‐viscosity limit for an initial boundary value problem of the linearized Navier‐Stokes equations of a compressible viscous fluid in the half‐plane is studied. By means of the asymptotic analysis with multiple scales, we first construct an approximate solution of the linearized problem of the Navier‐Stokes equations as the combination of inner and boundary expansions. Next, by carefully using the technique on energy methods, we show the pointwise estimates of the error term of the approximate solution, which readily yield the uniform stability result for the linearized Navier‐Stokes solution in the zero‐viscosity limit. © 1999 John Wiley & Sons, Inc.  相似文献   

5.
This paper is devoted to the well‐posedness for time‐space fractional Ginzburg‐Landau equation and time‐space fractional Navier‐Stokes equations by α‐stable noise. The spatial regularity and the temporal regularity of the nonlocal stochastic convolution are firstly established, and then the existence and uniqueness of the global mild solution are obtained by the Banach fixed point theorem and Mittag‐Leffler functions, respectively. Numerical simulations for time‐space fractional Ginzburg‐Landau equation are provided to verify the analysis results.  相似文献   

6.
In this paper, we study the dynamic stability of the three‐dimensional axisymmetric Navier‐Stokes Equations with swirl. To this purpose, we propose a new one‐dimensional model that approximates the Navier‐Stokes equations along the symmetry axis. An important property of this one‐dimensional model is that one can construct from its solutions a family of exact solutions of the three‐dimensionaFinal Navier‐Stokes equations. The nonlinear structure of the one‐dimensional model has some very interesting properties. On one hand, it can lead to tremendous dynamic growth of the solution within a short time. On the other hand, it has a surprising dynamic depletion mechanism that prevents the solution from blowing up in finite time. By exploiting this special nonlinear structure, we prove the global regularity of the three‐dimensional Navier‐Stokes equations for a family of initial data, whose solutions can lead to large dynamic growth, but yet have global smooth solutions. © 2007 Wiley Periodicals, Inc.  相似文献   

7.
In this paper, we are concerned with the system of the non‐isentropic compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force in three space dimensions. The global existence of solutions near constant steady states is established, and the time‐decay rates of perturbed solutions are obtained. The proof for existence is due to the classical energy method, and the investigation of large‐time behavior is based on the linearized analysis of the non‐isentropic Navier–Stokes–Poisson equations and the electromagnetic part for the linearized isentropic Navier–Stokes–Maxwell equations. In the meantime, the time‐decay rates obtained by Zhang, Li, and Zhu [J. Differential Equations, 250(2011), 866‐891] for the linearized non‐isentropic Navier–Stokes–Poisson equations are improved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
This article mainly concerns modeling the stochastic input and its propagation in incompressible Navier‐Stokes(N‐S) flow simulations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to derive the equations in the weak form. The resulting set of deterministic equations is then solved with standard methods to obtain the mean solution. In this article, the main method employs the Hermite polynomial as the basis in random space. Numerical examples are given and the error analysis is demonstrated for a model problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

10.
Following earlier work for Stokes equations, a least squares functional is developed for two‐ and three‐dimensional Oseen equations. By introducing a velocity flux variable and associated curl and trace equations, ellipticity is established in an appropriate product norm. The form of Oseen equations examined here is obtained by linearizing the incompressible Navier–Stokes equations. An algorithm is presented for approximately solving steady‐state, incompressible Navier–Stokes equations with a nested iteration‐Newton‐FOSLS‐AMG iterative scheme, which involves solving a sequence of Oseen equations. Some numerical results for Kovasznay flow are provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we consider a three dimensional quantum Navier‐Stokes‐Poisson equations. Existence of global weak solutions is obtained, and convergence toward the classical solution of the incompressible Navier‐Stokes equation is rigorously proven for well prepared initial data. Furthermore, the associated convergence rates are also obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
We investigate the stabilizing effect of convection in three‐dimensional incompressible Euler and Navier‐Stokes equations. The convection term is the main source of nonlinearity for these equations. It is often considered destabilizing although it conserves energy due to the incompressibility condition. In this paper, we show that the convection term together with the incompressibility condition actually has a surprising stabilizing effect. We demonstrate this by constructing a new three‐dimensional model that is derived for axisymmetric flows with swirl using a set of new variables. This model preserves almost all the properties of the full three‐dimensional Euler or Navier‐Stokes equations except for the convection term, which is neglected in our model. If we added the convection term back to our model, we would recover the full Navier‐Stokes equations. We will present numerical evidence that seems to support that the three‐dimensional model may develop a potential finite time singularity. We will also analyze the mechanism that leads to these singular events in the new three‐dimensional model and how the convection term in the full Euler and Navier‐Stokes equations destroys such a mechanism, thus preventing the singularity from forming in a finite time. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
Least‐squares mixed finite element schemes are formulated to solve the evolutionary Navier‐Stokes equations and the convergence is analyzed. We recast the Navier‐Stokes equations as a first‐order system by introducing a vorticity flux variable, and show that a least‐squares principle based on L2 norms applied to this system yields optimal discretization error estimates. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 441–453, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10015  相似文献   

14.
The article mainly concerns modeling the stochastic input and its propagation in incompressible Navier‐Stokes(N‐S) flow simulations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to derive the equations in the weak form. The resulting set of deterministic equations is then solved with standard methods to obtain the mean solution and variance of the stochastic velocity. In this article, the main method employs the Hermite polynomial as the basis in random space. Cavity problems are given to demonstrate the process of numerical simulation. Furthermore, Monte‐Carlo simulation method is applied to illustrate the accurate numerical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

15.
We present finite volume schemes for Stokes and Navier‐Stokes equations. These schemes are based on the mixed finite volume introduced in (Droniou and Eymard, Numer Math 105 (2006), 35‐71), and can be applied to any type of grid (without “orthogonality” assumptions as for classical finite volume methods) and in any space dimension. We present numerical results on some irregular grids, and we prove, for both Stokes and Navier‐Stokes equations, the convergence of the scheme toward a solution of the continuous problem. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

16.
Our aim in this paper is to study the asymptotic behavior, in terms of finite‐dimensional attractors, for higher‐order Navier‐Stokes‐Cahn‐Hilliard systems. Such equations describe the evolution of a mixture of 2 immiscible incompressible fluids. We also give several numerical simulations.  相似文献   

17.
In this per, we consider a special class of initial data for the three‐dimensional incompressible Navier–Stokes equations with gravity. We show that, under such conditions, the incompressible Navier‐Stokes equations with gravity are globally well posed, and the velocity minus gravity term has finite energy. The important features of the initial data is that the velocity fields minus gravity term are almost parallel to the corresponding vorticity fields in a very large space domain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this short paper, the initial value problem for the Navier‐Stokes equations with the Coriolis force is investigated. The Coriolis force appears in almost all of the models of meteorology and geophysics dealing with large‐scale phenomena. We prove that existence of uniform global large solutions to the Navier‐Stokes equations with the Coriolis force for a class of special initial data. The results obtained in this paper are different from the previous 2 types of results.  相似文献   

19.
We study Galerkin truncations of the two‐dimensional Navier‐Stokes equation under degenerate, large‐scale, stochastic forcing. We identify the minimal set of modes that has to be forced in order for the system to be ergodic. Our results rely heavily on the structure of the nonlinearity. © 2001 John Wiley & Sons, Inc.  相似文献   

20.
We study the Cauchy problem of the 3‐dimensional nonhomogeneous heat conducting Navier‐Stokes equations with nonnegative density. First of all, we show that for the initial density allowing vacuum, the strong solution to the problem exists globally if the velocity satisfies the Serrin's condition. Then, under some smallness condition, we prove that there is a unique global strong solution to the 3D viscous nonhomogeneous heat conducting Navier‐Stokes flows. Our method relies upon the delicate energy estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号