共查询到19条相似文献,搜索用时 62 毫秒
1.
本文针对线性对流占优扩散方程提出了一种新型数值模拟方法一扩展特征混合有限元法,即对对流部分沿特征线方向离散,而对扩散部分采用扩展混合有限元方法,同时高精度逼近未知函数,未知函数的梯度及伴随向量函数,通过严格的数值分析,得到其最优L^2模误差估计。 相似文献
2.
《数学的实践与认识》2013,(16)
讨论了对流占优问题稳定化的扩展混合元数值模拟.把稳定化的思想与扩展混合元方法相结合,既可以高精度逼近未知函数,未知函数的梯度及伴随向量函数,又能保证格式的稳定性.理论分析表明,方法是有效的,具有最优L2逼近精度. 相似文献
3.
利用修正的特征线方法,构建一类求解对流占优扩散方程的分裂特征混合有限元算法.在新的算法中,混合系统的系数矩阵对称正定,且原未知函数u与流函数σ=-ε▽u可分离求解.推导了加权能量模意义下的最优阶误差估计,并给出数值算例验证理论上的分析结果. 相似文献
4.
孙同军 《高校应用数学学报(英文版)》2001,16(1):63-71
Abastract. In this paper,a streamline-diffusion F. E. M. for linear Sobolev equations with con-vection-dominated term is given. According to the range of space-time F. E mesh parameter h,two choices for artifical diffusion parameter are presented,and for the corresponding computa-tion schemes the stability and error estimates in suitable norms are estabilished. 相似文献
5.
6.
给出求解一种二维非线性对流扩散方程组的Grank-Nicolson型特征有限元方法,并给出该方法的H^1模最优误差估计。 相似文献
7.
给出求解一种二维非线性对流扩散方程组的 Grank-Nicolson型特征有限元方法 ,并给出该方法的 H1模最优阶误差估计 . 相似文献
8.
对于线性对流占优扩散方程,采用特征线有限元方法离散时间导数项和对流项,用分片线性有限元离散空间扩散项,并给出了一致的后验误差估计,其中估计常数不依赖与扩散项系数。 相似文献
9.
10.
对流扩散方程的有限体积-有限元方法的误差估计 总被引:4,自引:1,他引:4
本文结合有限体积方法和有限元方法处理非线性对流扩散问题,非线性对流项利用有限体积方法处理,扩散项利用有限元方法离散,并给近似解的误差估计。 相似文献
11.
12.
本文针对一维定常型对流占优扩散方程提出了一类迎风有限体积格式 .该格式对对流项具有二阶精度 ,对扩散项保持一阶精度 ,符合对流占优扩散问题强对流、弱扩散的特点 . 相似文献
13.
Yinnian He 《计算数学(英文版)》2004,22(1):21-32
In this article we consider a two-level finite element Galerkin method using mixed finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equations. The method yields a $H^1$-optimal velocity approximation and a $L_2$-optimal pressure approximation. The two-level finite element Galerkin method involves solving one small, nonlinear Navier-Stokes problem on the coarse mesh with mesh size $H$, one linear Stokes problem on the fine mesh with mesh size $h << H$. The algorithm we study produces an approximate solution with the optimal, asymptotic in $h$, accuracy. 相似文献
14.
In this paper, some a posteriori error estimates of the finite-difference streamline-diffusion method for one- and two-dimensional time-dependent convection-dominated diffusion equations are presented, which can be used to reasonably adjust space mesh. Numerical results show that this method of local refinement is feasible and effective. 相似文献
15.
16.
Meshfree Finite Volume Element Method for Constrained Optimal Control Problem Governed by Random Convection Diffusion Equations 下载免费PDF全文
In this paper, we investigate a stochastic meshfree finite volume element method for an optimal control problem governed by the convection diffusion equations with random coefficients. There are two contributions of this paper. Firstly, we establish a scheme to approximate the optimality system by using the finite volume element method in the physical space and the meshfree method in the probability space, which is competitive for high-dimensional random inputs. Secondly, the a priori error estimates are derived for the state,the co-state and the control variables. Some numerical tests are carried out to confirm the theoretical results and demonstrate the efficiency of the proposed method. 相似文献
17.
A primal hybrid finite element scheme is introduced to produce completely discontinuous solution for diffusion and convection-diffusion problems. Same rate of convergence as classical methods is obtained in suitable norms. Finally an a posteriori error estimator is given. 相似文献
18.
19.
Wei Liu Hong-xing Rui Hui Guo School of Mathematics Sh ong University Jinan China School of Mathematics Information Ludong University Yantai China School of Mathematics Computational Science China University of Petroleum Dongying China 《应用数学学报(英文版)》2011,(3)
Expanded mixed finite element approximation of nonlinear reaction-diffusion equations is discussed. The equations considered here are used to model the hydrologic and bio-geochemical phenomena. To linearize the mixed-method equations, we use a two-grid method involving a small nonlinear system on a coarse gird of size H and a linear system on a fine grid of size h. Error estimates are derived which demonstrate that the error is O(△t + h k+1 + H 2k+2 d/2 ) (k ≥ 1), where k is the degree of the approximating ... 相似文献