首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study synchronization of oscillators that are indirectly coupled through their interaction with an environment. We give criteria for the stability or instability of a synchronized oscillation. Using these criteria we investigate synchronization of systems of oscillators which are weakly coupled, in the sense that the influence of the oscillators on the environment is weak. We prove that arbitrarily weak coupling will synchronize the oscillators, provided that this coupling is of the ‘right’ sign. We illustrate our general results by applications to a model of coupled GnRH neuron oscillators proposed by Khadra and Li [A. Khadra, Y.X. Li, A model for the pulsatile secretion of gonadotropin-releasing hormone from synchronized hypothalamic neurons, Biophys. J. 91 (2006) 74-83.], and to indirectly weakly-coupled λ-ω oscillators.  相似文献   

2.
We investigate the dynamics of systems of many coupled phase oscillators with heterogeneous frequencies. We suppose that the oscillators occur in M groups. Each oscillator is connected to other oscillators in its group with "attractive" coupling, such that the coupling promotes synchronization within the group. The coupling between oscillators in different groups is "repulsive," i.e., their oscillation phases repel. To address this problem, we reduce the governing equations to a lower-dimensional form via the ansatz of Ott and Antonsen, Chaos 18, 037113 (2008). We first consider the symmetric case where all group parameters are the same, and the attractive and repulsive coupling are also the same for each of the M groups. We find a manifold L of neutrally stable equilibria, and we show that all other equilibria are unstable. For M?≥?3, L has dimension M?-?2, and for M?=?2, it has dimension 1. To address the general asymmetric case, we then introduce small deviations from symmetry in the group and coupling parameters. Doing a slow/fast timescale analysis, we obtain slow time evolution equations for the motion of the M groups on the manifold L. We use these equations to study the dynamics of the groups and compare the results with numerical simulations.  相似文献   

3.
4 (KTP) optical parametric oscillators (OPOs) with pump and idler resonant cavities. With a linear two-mirror cavity the pump power at threshold was 70 mW. The single-frequency signal and idler output wavelengths were tuned in the range of 1025 to 1040 nm and 1250 to 1380 nm by tuning the dye laser in the range of 565 to 588 nm. With a dual three-mirror cavity the threshold was 135 mW. Pumped by 500 mW of 578 nm radiation the 1040 nm single-frequency signal wave output power was 84 mW. Power and frequency stable operation with a spectral bandwidth of less than 9 MHz was obtained by piezo-electrically locking the length of the pump resonant cavity to the dye laser wavelength. Similar performance was achieved by placing the idler resonant OPO inside the resonator of the dye laser. With this system power stable and single-frequency operation was achieved with a spectral bandwidth of less than 11 MHz for the idler wave. Received: 3 February 1998/Revised version: 9 March 1998  相似文献   

4.
We investigate the dynamics of a population of globally coupled FitzHugh-Nagumo oscillators with a time-periodic coupling strength. While for synchronizing global coupling, the in-phase state is always stable, the oscillators split into several cluster states for desynchronizing global coupling, most commonly in two, irrespective of the coupling strength. This confines the ability of the system to form n:m locked states considerably. The prevalence of two and four cluster states leads to large 2:1 and 4:1 subharmonic resonance regions, while at low coupling strength for a harmonic 1:1 or a superharmonic 1:m time-periodic coupling coefficient, any resonances are absent and the system exhibits nonresonant phase drifting cluster states. Furthermore, in the unforced, globally coupled system the frequency of the oscillators in a cluster state is in general lower than that of the uncoupled oscillator and strongly depends on the coupling strength. Periodic variation of the coupling strength at twice the natural frequency causes each oscillator to keep oscillating with its autonomous oscillation period.  相似文献   

5.
We investigate the synchronous dynamics of Kuramoto oscillators and van der Pol oscillators on Watts-Strogatz type small-world networks. The order parameters to characterize macroscopic synchronization are calculated by numerical integration. We focus on the difference between frequency synchronization and phase synchronization. In both oscillator systems, the critical coupling strength of the phase order is larger than that of the frequency order for the small-world networks. The critical coupling strength for the phase and frequency synchronization diverges as the network structure approaches the regular one. For the Kuramoto oscillators, the behavior can be described by a power-law function and the exponents are obtained for the two synchronizations. The separation of the critical point between the phase and frequency synchronizations is found only for small-world networks in the theoretical models studied.  相似文献   

6.
R K Agrawal  V S Varma 《Pramana》1991,36(5):489-496
The existence of finite discontinuities in the energy eigenvalue spectra of certain multiterm potentials when their coupling parameters attain suitably chosen limiting values has been reported in the literature. We show that such discontinuities are also characteristic of such well-known systems as generalized anharmonic oscillators and the doubly anharmonic oscillator in one dimension. The present study strengthens the general conjecture that eigenvalue spectra are likely to display discontinuities in situations where a potential undergoes an abrupt change in shape with smooth variation of its coupling parameters.  相似文献   

7.
黄霞  徐灿  孙玉庭  高健  郑志刚 《物理学报》2015,64(17):170504-170504
本文讨论了一维闭合环上Kuramoto相振子在非对称耦合作用下同步区域出现的多定态现象. 研究发现在振子数N≤3情形下系统不会出现多态现象, 而N≥4多振子系统则呈现规律的多同步定态. 我们进一步对耦合振子系统中出现的多定态规律及定态稳定性进行了理论分析, 得到了定态渐近稳定解. 数值模拟多体系统发现同步区特征和理论描述相一致. 研究结果显示在绝热条件下随着耦合强度的减小, 系统从不同分支的同步态出发最终会回到同一非同步态. 这说明, 耦合振子系统在非同步区由于运动的遍历性而只具有单一的非同步态, 在发生同步时由于遍历性破缺会产生多个同步定态的共存现象.  相似文献   

8.
双模耦合谐振子哈密顿量的一般解法   总被引:2,自引:0,他引:2  
双模耦合谐振子哈密顿量是广义坐标■和广义动量■的一般二次型,通过一个坐标变换可以将其表示为新基底下的标准二次型,经计算得知,新基底之间满足准正则对易关系,从而引入准粒子的产生和湮没算符,这样就消除了耦合项,哈密顿量化简成为双模独立谐振子情形,使问题得到解决.这样的解决方法可以推广到各向异性n模谐振子的耦合体系.  相似文献   

9.
It has been known that a diffusive coupling between two limit cycle oscillations typically leads to the in-phase synchronization and also that it is the only stable state in the weak-coupling limit. Recently, however, it has been shown that the coupling of the same nature can result in the distinctive dephased synchronization when the limit cycles are close to the homoclinic bifurcation, which often occurs especially for the neuronal oscillators. In this paper we propose a simple physical model using the modified van der Pol equation, which unfolds the generic synchronization behaviors of the latter kind and in which one may readily observe changes in the sychronization behaviors between the distinctive regimes as well. The dephasing mechanism is analyzed both qualitatively and quantitatively in the weak-coupling limit. A general form of coupling is introduced and the synchronization behaviors over a wide range of the coupling parameters are explored to construct the phase diagram using the bifurcation analysis.  相似文献   

10.
A simple amplifier tube has been designed which, when used with already well-developed, stable single-frequency CO2 laser oscillators, produces a cw power output of up to 40 W suitable for pumping far infra-red lasers.  相似文献   

11.
High precision approximate analytic expressions of the ground state energies and wave functions for the arbitrary physical potentials are found by first casting the Schrödinger equation into the nonlinear Riccati form and then solving that nonlinear equation analytically in the first iteration of the quasilinearization method (QLM). In the QLM the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. The choice of zero iteration is based on general features of exact solutions near the boundaries. The approach is illustrated on the examples of the Yukawa, Woods-Saxon and funnel potentials. For the latter potential, solutions describing charmonium, bottonium and topponium are analyzed. Comparison of our approximate analytic expressions for binding energies and wave functions with the exact numerical solutions demonstrates their high accuracy in the wide range of physical parameters. The accuracy ranging between 10−4 and 10−8 for the energies and, correspondingly, 10−2 and 10−4 for the wave functions is reached. The derived formulas enable one to make accurate analytical estimates of how variation of different interactions parameters affects correspondent physical systems.  相似文献   

12.
We study phase synchronization in oscillator networks through phase reduced method. The dynamics of networks is reduced to phase equations by this method. Analysing the phase equations through the master stability function method, one obtains that the oscillators with identical frequency can be in-phase synchronized by weak balanced coupling. Similarly, the problem of frequency synchronization of oscillators with different frequencies is transformed to the existence of a locally asymptotically stable equilibrium of the phase error system.  相似文献   

13.
Experiments on chaotically oscillating arrays of 64 nickel electrodes in sulfuric acid were carried out. External resistors in parallel and series are added to vary the extent of global coupling among the oscillators without changing the other properties of the system. The array is heterogeneous due to small variations in the properties of the electrodes and there is also a small amount of noise. The addition of global coupling transforms a system of independent elements to a state of complete synchronization. At intermediate coupling strengths stable clusters, or condensates of elements, form. All the elements in a cluster follow the same chaotic trajectory but each cluster has its own dynamics; the system is thus temporally chaotic but spatially ordered. Many cluster configurations occur under the same conditions and transitions among them can be produced. For values of the coupling parameter on either side of the stable cluster region a non-stationary behavior occurs in which clustered and synchronized states alternately form and break up. Some statistical properties of the cluster states are determined. (c) 2000 American Institute of Physics.  相似文献   

14.
In this second part of the treatment of instantons in quantum mechanics, the focus is on specific calculations related to a number of quantum mechanical potentials with degenerate minima. We calculate the leading multi-instanton contributions to the partition function, using the formalism introduced in the first part of the treatise [Ann. Phys. (N. Y.) (previous issue) (2004)]. The following potentials are considered: (i) asymmetric potentials with degenerate minima, (ii) the periodic cosine potential, (iii) anharmonic oscillators with radial symmetry, and (iv) a specific potential which bears an analogy with the Fokker-Planck equation. The latter potential has the peculiar property that the perturbation series for the ground-state energy vanishes to all orders and is thus formally convergent (the ground-state energy, however, is non-zero and positive). For the potentials (ii), (iii), and (iv), we calculate the perturbative B-function as well as the instanton A-function to fourth order in g. We also consider the double-well potential in detail, and present some higher-order analytic as well as numerical calculations to verify explicitly the related conjectures up to the order of three instantons. Strategies analogous to those outlined here could result in new conjectures for problems where our present understanding is more limited.  相似文献   

15.
The performance of a ring of linearly coupled, monostable nonlinear oscillators is optimized towards its goal of acting as energy harvester – through piezoelectric transduction – of mesoscopic fluctuations, which are modeled as Ornstein-Uhlenbeck noises. For a single oscillator, the maximum output voltage and overall efficiency are attained for a soft piecewise-linear potential (providing a weak attractive constant force) but they are still fairly large for a harmonic potential. When several harmonic springs are linearly and bidirectionally coupled to form a ring, it is found that counter-phase coupling can largely improve the performance while in-phase coupling worsens it. Moreover, it turns out that few (two or three) coupled units perform better than more.  相似文献   

16.
Spin-orbit coupled Bosonic atoms confined in external potentials open up new avenues for quantumstate manipulation and will contribute to the design and exploration of novel quantum devices.Here we consider a quasi-two-dimensional spin-orbit coupled Bose-Einstein condensate confined in an external harmonic potential,with emphasis on the effects of anisotropic spin-orbit coupling on the equilibrium ground-state structure of such a system.For the cases with spin-orbit coupling solely in x- or y-axis direction,the ground-state structure can develop to the well-known standing wave phase,in which the two components always form an alternative density arrangement.For a two-dimensional anisotropic spin-orbit coupling,the separated lumps first become bend,then form two rows of stripe structure along y direction with further increasing the strength of spin-orbit coupling in x-direction.Furthermore,the distance between these two rows of stripe structure is also investigated in detail.  相似文献   

17.
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method.  相似文献   

18.
The supercritical complex Swift-Hohenberg equation models pattern formation in lasers, optical parametric oscillators and photorefractive oscillators. Simulations of this equation in one spatial dimension reveal that much of the observed dynamics can be understood in terms of the properties of exact solutions of phase-winding type. With real coefficients these states take the form of time-independent spatial oscillations with a constant phase difference between the real and imaginary parts of the order parameter and may be unstable to a longwave instability. Depending on parameters the evolution of this instability may or may not conserve phase. In the former case the system undergoes slow coarsening described by a Cahn-Hilliard equation; in the latter it undergoes repeated phase-slips leading either to a stable phase-winding state or to a faceted state consisting of an array of frozen defects connecting phase-winding states with equal and opposite phase. The transitions between these regimes are studied and their location in parameter space is determined.  相似文献   

19.
利用二次型理论构造一个幺正矩阵进行坐标和动量变换,把n模动量耦合谐振子体系的哈密顿量化为标准的二次型,进而得到n模动量耦合谐振子体系的能量本征值.对n模坐标耦合的情况也进行了类似求解,并提供了解决该类问题的一般数学方法.  相似文献   

20.
We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations; however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号