首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The disulfonamide ligands 1,2-C(6)H(4)(NH(2)SO(2)C(6)H(5))(2) (1) and 1,2-C(6)H(4)(NH(2)SO(2)C(6)H(4)-p-Bu(t))(2) (2), which are readily available in good yields from o-phenylenediamine and the corresponding sulfonyl chlorides, efficiently extract Pb(II) from water into 1,2-dichloroethane when used in synergistic combinations with 2,2'-bipyridine via an ion-exchange mechanism. The extraction was shown to proceed via the formation of a ternary Pb-sulfamido-2,2'-bipyridine complex. The X-ray crystal structure of the binary Pb-sulfamido complex 3 shows a coordination polymer with a stereochemically active lone pair on Pb formed by S=O-Pb axial coordination.  相似文献   

2.
The binary and ternary (2,2'-bipyridine) complexes of dipositive lead formed by N-carbonyl and N-sulfonyl amino acids, which are ligands containing the peptide and the sulfonamide group, respectively, were investigated in aqueous solution by NMR and differential pulse polarography, and some were also characterized crystallographically. N-Tosylglycine, N-tosyl-beta-alanine, and N-benzoylglycine behave as simple carboxylate ligands at acid pH, while around neutrality they switch to dianionic N,O-bidentate chelating ligands due to the involvement of the deprotonated amide nitrogen as an additional donor site. The same coordination behavior is maintained in the presence of 2,2'-bipyridine. The binary and ternary species formed in solution, and their stability constants were determined and compared with those of the homologous complexes of Pd(2+), Cu(2+), Cd(2+), and Zn(2+). The Pb(2+) ion is the only dipositive metal which is effective in promoting peptide nitrogen deprotonation in benzoylglycine. The molecular structures of [Pb(N-tosylglycinato-N,O)(H(2)O)] (1), [Pb(N-benzoylglycinato-O)(2)(H(2)O)(2)].2H(2)O (2), and [Pb(N-tosylglycinato-O)(2)(bpy)] (3) were determined by X-ray crystallography (O and N,O refer to the ligands binding as carboxylates and as N,O-chelating dianions, respectively). These compounds are all polymeric with six- to eight-coordinate metals showing distorted coordination geometries indicative of a stereochemically active metal lone pair. Polymerization is invariably determined by a bidentate chelate carboxylate group with one oxygen bridging between two metals, and in 2 and 3 it occurs through the formation of chains of Pb(2)O(2) square-planar rings. The binding set in 1, involving a deprotonated amide nitrogen and a sulfonic oxygen, is unprecedented for the Pb(2+) ion. This work provides new information on the solution and solid state chemistry of dipositive lead with ligands of biological interest, a research area that has received little attention in the past, although it is of great relevance for understanding the mechanisms of metal toxicity.  相似文献   

3.
Fan SR  Zhu LG 《Inorganic chemistry》2007,46(16):6785-6793
Four structurally diverse complexes, {[Pb(Hssal)(2,2'-bipy)](4,4'-bipy)0.5}n (1), [Pb2(Hssal)2(2,2'-bipy)2(4,4'-bipy)(H2O)2] (2), [Pb(Hssal)(phen)(4,4'-bipy)0.5]n (3), and [Pb(Hssal)(2,2'-bipy)(bpe)0.5]n (4), have been synthesized and characterized by elemental analyses, IR, thermogravimetric analyses, fluorescent spectra, and single-crystal X-ray analyses, where Hssal2- is doubly deprotonated 5-sulfosalicylate, 2,2'-bipy is 2,2'-bipyridine, phen is 1,10-phenanthroline, 4,4'-bipy is 4,4'-bipyridine, and bpe is trans-1,2-bis(4-pyridyl)ethylene. The structure of complex 1 possesses a one-dimensional ladderlike chain with guest 4,4'-bipy molecules, while the molecular structure of complex 2 is a dimeric species with a coordinating 4,4'-bipy ligand. Complex 3 consists of a one-dimensional ladderlike chain with monodentate 4,4'-bipyridine but somewhat different from that of complex 1. Complex 4 is a two-dimensional layer structure. In 1-4, all 5-sulfosalicylates are doubly deprotonated, and all carboxylate groups of Hssal2- chelate to PbII ions; however, the coordination modes of sulfonyl groups are different: syn-syn bridging in 1, noncoordinating in 2, syn-skew bridging in 3, and one-atom bridging in 4. The noncoordinating mode of sulfonate in PbII complexes containing 5-sulfosalicylate is first reported in this presentation. The 4,4'-bipy ligands act as guest molecules in 1, dimeric linkers in 2, and monodentates in 3. The pi-pi stacking interactions can be observed in complexes 1-3, whereas there is no such interaction in complex 4. The coordination spheres of PbII ions in 1-4 are controlled by three factors: the activity of a lone pair of electrons, weak Pb-O interactions, and pi-pi stacking interactions. The PbII lone pair in 4 is inactive, whereas in 1-3, they are stereochemically active. The thermal stability and fluorescent property of complexes 1-4 are different from those of PbII complexes only containing chelating ligands, [Pb(Hssal)(2,2'-bipy)(DMF)]n (5), and [Pb(Hssal)(2,2'-bipy)(H2O)]n (6), and [Pb(Hssal)(phen)(DMF)]n (7).  相似文献   

4.
戴俊  杨娟  陈曦 《无机化学学报》2011,27(8):1617-1624
用水热合成方法得到了2个二价铅配合物[Pb(BA)2(phen)].(HBA)(1)及[Pb(2,2′-bipy)(BA)(NO3)]n(2)(HBA=benzoic acid;phen=1,10-phenanthroline;2,2′-bipy=2,2′-bipyridine),对它们进行了元素分析、红外光谱、荧光光谱、粉晶衍射及热分析表征,并通过X-射线单晶衍射测定了配合物的单晶结构。X-射线单晶结构解析表明,配合物1与2均属三斜晶系,P1空间群。化合物1中,弱Pb…O相互作用、分子间氢键及π…π堆积作用共同构筑了配合物1的三维框架结构。铅的6s孤电子具有立体化学活性,使配位键分布于半球型区域。化合物2中,相邻的PbⅡ离子通过螯合-桥联的硝酸根联结成一维链状结构,广泛存在的π…π堆积作用将邻近的一维链堆积成三维超分子结构。化合物2中的6s孤对电子未显示出立体化学活性,其配位键近似分布于全球型区域。  相似文献   

5.
The amine coordination of lead(II) has been examined through the preparation and structural analysis of Lewis base adducts of bis(thiolato)lead(II) complexes. Reaction of Pb(OAc)(2) with 2,6-dimethylbenzenethiol affords (2,6-Me(2)C(6)H(3)S)(2)Pb (6) in high yield. The solubility of 6 in organic solvents allows for the preparation of the 1:2 Lewis acid-base adduct [(2,6-Me(2)C(6)H(3)S)(2)Pb(py)(2)](7), and 1:1 adducts [(2,6-Me(2)C(6)H(3)S)(2)Pb(micro(2)-bipy)](infinity](8) and [(2,6-Me(2)C(6)H(3)S)(2)Pb(micro(2)-pyr)](infinity)(9)(where py = pyridine, bipy = 4,4'-bipyridyl and pyr = pyrazine) from reaction with an excess of the appropriate amine. In contrast to 7, reaction of (C(6)H(5)S)(2)Pb (1) with pyridine afforded the 2:1 adduct [(C(6)H(5)S)(4)Pb(2)(py)](infinity)(10). Compounds were characterized via elemental analysis, FT-IR, solution (1)H and (13)C[(1)H](6) NMR spectroscopy, and X-ray crystallography (7-10). The structures of 7-9 show the thiolate groups occupying two equatorial positions and two amine nitrogen atoms occupying axial coordination sites, yielding distorted see-saw coordination geometries, or distorted trigonal bipyramids if an equatorial lone pair on lead is considered. The absence of intermolecular contacts in 7 and 8 result in monomeric and one-dimensional polymeric structures, respectively. Weak Pb...S intermolecular contacts in 9 result in the formation of a two-dimensional macrostructure. In contrast, the structure of , shows extensive intermolecular Pb...S interactions, resulting in five- and six-coordinate bonding environments for lead(II), and a complex polymeric structure in the solid state. This demonstrates the ability of the 2,6-dimethylphenylthiolate ligand to limit intermolecular lead-sulfur interactions, while allowing the axial coordination of amine Lewis base ligands.  相似文献   

6.
Pyridineselenolate forms stable homoleptic coordination compounds of Sn(II), Sn(IV), and Pb(II). The complexes can be prepared either by metathesis or by insertion of the metal into the Se-Se bond of dipyridyl diselenide, and they are soluble in coordinating solvents such as pyridine. Isolation of the Pb(II) complex from both Pb(0) and Pb(IV) starting materials indicates that the pyridineselenolate ligand cannot stabilize Pb(IV). The compounds all sublime intact and decompose at elevated temperatures: the divalent complexes give MSe (M = Sn, Pb), while the Sn(IV) compound delivers SnSe(2). In order to isolate a crystalline Pb compound, the 3-trimethylsilyl-2-pyridineselenolate ligand was prepared. Attachment of the Me(3)Si functional group increases compound solubility, and leads to the isolation of crystalline Pb(3-Me(3)Si-2-SeNC(5)H(4))(2). The structure of [Sn(2-SeNC(5)H(4))(2)](2) (1) was determined by single-crystal X-ray diffraction and shown to be a dimer, with one chelating pyridineselenolate per Sn(II) and a pair of pyridineselenolates that asymmetrically span the two metal centers to form an eight membered (-Sn-Se-C-N-Sn-Se-C-N-) ring, with weak Sn-Se interactions connecting the dimeric units. Crystal data for 1 (Mo Kalpha, 298(2) K): orthorhombic space group Pbca, a = 8.214(1) ?, b = 21.181(3) ?, c = 14.628(2) ?.  相似文献   

7.
We describe the synthesis, electrochemistry, and photophysical properties of several Ru(II) complexes bearing different numbers of pyrenylethynylene substituents in either the 5- or 5,5'-positions of 2,2'-bipyridine, along with the appropriate Ru(II) model complexes bearing either bromo- or ethynyltoluene functionalities. In addition, we prepared and studied the photophysical behavior of the diimine ligands 5-pyrenylethynylene-2,2'-bipyridine and 5,5'-dipyrenylethynylene-2,2'-bipyridine. Static and dynamic absorption and luminescence measurements reveal the nature of the lowest excited states in each molecule. All model Ru(II) complexes are photoluminescent at room temperature and exhibit excited-state behavior consistent with metal-to-ligand charge transfer (MLCT) characteristics. In the three Ru(II) molecules bearing multiple pyrenylethynylene substituents, there is clear evidence that the lowest excited state is triplet intraligand (3IL)-based, yielding long-lived room temperature phosphorescence in the red and near IR. This phosphorescence emanates from either 5-pyrenylethynylene-2,2'-bipyridine or 5,5'-dipyrenylethynylene-2,2'-bipyridine, depending upon the composition of the coordination compound. In the former case, the excited-state absorption difference spectra that were measured for the free ligand are easily superimposed with those obtained for the metal complexes coordinated to either one or two of these species. The latter instance is slightly complicated since coordination of the 5,5'-ligand to the Ru(II) center planarizes the diimine structure, leading to an extended conjugation on the long axis with a concomitant red shift of the singlet pi-pi absorption transitions and the observed room temperature phosphorescence. As a result, transient absorption measurements obtained using free 5,5'-dipyrenylethynylene-2,2'-bipyridine show a marked blue shift relative to its Ru(II) complex, and this extended pi-conjugation effect was confirmed by coordinating this ligand to Zn(II) at room temperature. In essence, all three pyrenylethynylene-containing Ru(II) complexes are unique in this genre of chromophores since the lowest excited state is 3IL-based at room temperature and at 77 K, and there is no compelling evidence of interacting or equilibrated excited states.  相似文献   

8.
A C2-symmetric enantiopure 4,5-bis(pinene)-2,2'-bipyridine ligand (-)-L was used to investigate the diastereoselectivity in the formation of [ML3]2+ coordination species (M = Fe(II), Ru(II), Os(II), Zn(II), Cd(II), Cu(II), Ni(II)), and [ML2Cl2] (M = Ru(II), Os(II)). The X-ray structures of the [ML3]2+ complexes were determined for Delta-[FeL3](PF6)2, Delta-[RuL3](PF6)2, Lambda-[RuL3](PF6)2, Delta-[OsL3](PF6)2, and Lambda-[OsL3](TfO)2. All of these compounds were also characterized by NMR, CD and UV/VIS absorption spectroscopy. The [FeL3]2+ diastereoisomers were studied in equilibrated solutions at various temperatures and in several solvents. The [RuL3]2+ complexes, which are thermally stable up to 200 degrees C, were photochemically equilibrated.  相似文献   

9.
4,4'-Bis(N-tert-butyloxylamino)-2,2'-bipyridine (4) and its 1:1 complexes with bis(hexafluoroacetylacetonato)manganese(II), -copper(II), and -zinc(II) were prepared. An X-ray structure analysis of free ligand 4 reveals that the molecule has a trans conformation with Ci symmetry and the aminoxyl radical center has a short contact of 2.36 A with one of the neighboring molecules. The three 1:1 complexes have mutually similar molecular structures in which the 2,2'-bipyridine moiety has a cis conformation and serves as a bidentate ligand and coordination geometry around the metal atom is a distorted octahedron. The EPR experiments for free ligand 4 and [Zn(hfac)2.4] in frozen solution suggested that the exchange couplings between the two aminoxyls (R) through the 2,2'-bipyridine rings are antiferromagnetic with JR-R/kB = -19.3 +/- 0.5 and -24.3 +/- 0.4 K, respectively. Isosceles triangular three-spin models were applied to the 1:1 magnetic metal complexes to give JR-M/kB = -19.1 +/- 0.2 K and JR-R/kB = -32.9 +/- 0.3 K for [Mn(hfac)2.4] and JR-M/kB = +73 +/- 18 K and JR-R/kB = -24.5 +/- 6.5 K for [Cu(hfac)2.4].  相似文献   

10.
Two luminescent hybrids, Znqb- and Znqp-montmorillonites (q = 8-hydroxyquinoline, b = 2,2'-bipyridine, p = 1,10-phenanthroline), were prepared by solid-solid reactions between Zn(II)-montmorillonite and two ligands (8-hydroxyquinoline and 2,2'-bipyridine or 1,10-phenanthroline) at room temperature. The intercalation and in situ complex formation of the two ligands into an interlayer space of Zn(II)-montmorillonite were confirmed by powder XRD, TG-DTA, as well as FT-IR, UV-vis and photoluminescence spectroscopies. The emission band of Znqb-montmorillonite was red-shifted compared to that of the mixture of Znq-montmorillonite and Znb-montmorillonite, confirming the formation of Znqb complex in montmorillonite. The photoluminescence intensity of Znqb-montmorillonite was higher than that of Znqp-montmorillonite, indicating that 2,2'-bipyridine enhanced the emission intensity of zinc(8-hydroxyquinoline) complex in montmorillonite, while the coordination of 1,10-phenanthroline quenched the intensity of the immobilized chelate.  相似文献   

11.
Adducts of Ni(II)-square planar complexes [Ni(beta-dik)(Me(4)en)](+), with a series of bidentate ligands (L), where beta-dik=acetylacetonate (acac) and benzoylacetonate (bzac), Me(4)en=N,N,N',N'-tetramethylethylenediamine and L=Me(4)en, 2,2'-bipyridine (bipy), ethylenediamine (en) and oxalate (C(2)O(4)(2-)) have been synthesized and characterized by spectral, thermal and magnetic measurements. Formation constants of the adducts formed from a series of ternary mixed Ni(II) complexes with the general formula [Ni(beta-dik)(diam)](+) with 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy) and pyridine were spectrophotometrically determined. Thermodynamic parameters of the adduct formation between nickel(II) square-planar chelates and pyridine (py), 2,2'-bipyridine (bipy) and acetylacetone (acac) were also spectrophotometrically determined in 1,2-dichloroethane. The thermal stability of the isolated adducts was studied using thermogravimetry and the decomposition schemes of the adducts were given.  相似文献   

12.
The crystal structures of the series of three complexes, [Cu(Gly)(bpy)Cl].2H2O (1) (Gly=glycine; bpy=2,2'-bipyridine), [Cu(Gly)(phen)Cl]2.7H2O (2) (phen=1,10-phenanthroline), and [Cu(Gly)(bpa)(H2O)Cl] (3) (bpa=2,2'-bipyridylamine) were determined, and the coordination modes of Cu(II) ternary complexes were compared. The central Cu(II) atoms of complexes 1 and 3 have a similar distorted octahedral coordination geometry, while the Cu(II) atom of complex 2 has a distorted square pyramidal coordination. In all complexes, the aromatic heterocyclic compounds bpy, phen, and bpa, behave as a bidentate N,N' ligand, and Gly behaves as a bidentate N,O ligand. DNA-binding properties of the complexes to calf thymus (CT) DNA were studied by using the fluorescence method. Each of the complexes showed binding propensity to CT DNA with the relative order 2>3> or =1. DNA cleavage studies indicate that each of the complexes, especially 2, can cleave plasmid supercoiled pBR322 DNA in the presence of H2O2 and ascorbic acid with cleavage efficiency in the order 2>3 approximately 1. The degradation of the conformation of CT DNA by the complexes was also reflected in the decrease in the intensities of the characteristic CD bands with the relative order 2>3 approximately 1.  相似文献   

13.
Tetradentate ligands are obtained by joining two optically active [4,5]-pineno-2,2'-bipyridine molecules in a stereoselective reaction, where two new stereogenic centers are created. These ligands are new members of the chiragen family that form OC-6 complexes with predetermined helical chirality. Ru(II) complexes with 4,4'-dimethyl-2,2'-bipyridine occupying the remaining coordination sites have been synthesized with all three new ligands. Characterization of the ruthenium complexes by NMR spectroscopy confirm C(2)-symmetric structures in solution. CD spectra show that the complexes are composed of only one helical diastereomer with the expected absolute configurations. In addition, a strong chiral amplification is observed, if precursors of low enantiomeric purity are used. This is due to the inability of ligands that are heterochiral in the two bpy moieties to coordinate to one center. X-ray structural data were obtained for the complex Delta-[RuCG[o-xyl](4,4'-DMbpy)](PF(6))(2). Crystal data (Mo Kalpha, 298 K): trigonal, space group R3, a = 52.986(4) ?, c = 10.545(1) ?, V = 25639(4) ?(3), Z = 18, R1 = 0.087, and wR2 = 0.0986 for 2609 observed reflections.  相似文献   

14.
A series of complexes of the type K(2)[Ru(NN)(CN)(4)] has been prepared, in which NN is a diimine ligand, and were investigated for both their structural and photophysical properties. The ligands used (and the abbreviations for the resulting complexes) are 3-(2-pyridyl)pyrazole (Ru-pypz), 2,2'-bipyrimidine (Ru-bpym), 5,5'-dimethyl-2,2'-bipyridine (Ru-dmb), 1-ethyl-2-(2-pyridyl)benzimidazole (Ru-pbe), bidentate 2,2':6',2'-terpyridine (Ru-tpy). The known complexes with = 2,2'-bipyridine (Ru-bpy) and 1,10-phenathroline (Ru-phen) were also included in this work. A series of crystallographic studies showed that the [Ru(NN)(CN)(4)](2-) complex anions form a range of elaborate coordination networks when crystallised with either K(+) or Ln(3+) cations. The K(+) salts are characterised by a combination of near-linear Ru-CN-K bridges, with the cyanides coordinating to K(+) in the usual 'end-on' mode, and unusual side-on pi-type coordination of cyanide ligands to K(+) ions. With Ln(3+) cations in contrast only Ru-CN-Ln near-linear bridges occurred, affording 1-dimensional helical or diamondoid chains, and 2-dimensional sheets constituted from linked metallamacrocyclic rings. All of the K(2)[Ru(CN)(4)] complexes show a reversible Ru(II)/Ru(III) couple (ca.+0.9 V vs. Ag/AgCl in water), the exception being Ru-tpy whose oxidation is completely irreversible. Luminescence studies in water showed the presence of (3)MLCT-based emission in all cases apart from Ru-bpym with lifetimes of tens/hundreds of nanoseconds. Time-resolved infrared studies showed that in the (3)MLCT excited state the principal C-N stretching vibration shifts to positive energy by ca. 50 cm(-1) as a consequence of the transient oxidation of the metal centre to Ru(III) and the reduction in back-bonding to the cyanide ligands; measurement of transient decay rates allowed measurements of (3)MLCT lifetimes for those complexes which could not be characterised by luminescence spectroscopy. A few complexes were also examined in different solvents (MeCN, dmf) and showed much weaker emission and shorter excited-state lifetimes in these solvents compared to water.  相似文献   

15.
Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.  相似文献   

16.
Complexation of desferrioxamine B (DFB) model dihydroxamic acids (HO(CH3)NCO(CH2)xCONH(CH2)yCON(CH3)OH where x = 2, 3, y = 5, 4, 3, 2, and the compounds are abbreviated as 2,5-DIHA, 2,4-DIHA, 2,3-DIHA, 2,2-DIHA, 3,4-DIHA and 3,3-DIHA, respectively) with Cu(II), Ni(II), Zn(II), Pb(II) and Cd(II) was studied by pH-potentiometric and spectroscopic (UV-VIS, NMR and ESI-MS) techniques. The effects of the position of the peptide group, the chain length and the geometry on the stability and stoichiometry of the complexes formed were evaluated. It was concluded that metal ions preferring regular octahedral geometry in their complexes form the most stable bis-chelated mononuclear complexes, [ML], with 2,5-DIHA having the same connecting chain structure and length as those of DFB. This benefit of 2,5-DIHA, however, almost disappears in the case of Cu(II). With this metal, which prefers the equatorial coordination of two hydroxamates, the parallel formation of both [CuL] and [Cu2L2] was found. ESI-MS results indicate that the latter complex is exclusively formed with 2,2-DIHA involving the shortest linker. All these dihydroxamic acids are excellent chelating agents for Pb(II). The special geometry determined by the lone pair electrons should be responsible for the somewhat unique preference order of the ligands towards the Pb(II) ion, for the favoured formation of the monomeric bis-chelated complexes and also for the unexpectedly high stability of the species [Pb(2,2-DIHA)].  相似文献   

17.
Hexafluorophosphate salts of mononuclear complexes [Ru(II)Cl(L)(terpy)]+ (L = dmbpy (1); dpbpy (2), sambpy (3), and dpp (7), and binuclear complexes [Ru(II)2Cl2(dpp)(terpy)2]2+ (8) and [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+ (9) were prepared and characterized. Abbreviations of the ligands are bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, dpbpy = 4,4'-diphenyl-2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, sambpy = 4,4'-bis((S)-(+)-alpha-1-phenylethylamido)-2,2'-bipyridine, and terpy = 2,2':6',2'-terpyridine. The absorption spectra of 8 and 9 are dominated by ligand-centered bands in the UV region and by metal-to-ligand charge-transfer bands in the visible region. The details of their spectroscopic and electrochemical properties were investigated. In both binuclear complexes, it has been found that the HOMO is based on the Ru metal, and LUMO is dpp-based. [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+, indicating intense emission at room temperature, and a lifetime of 154 ns. The long lifetime of this bimetallic chromophore makes it a useful component in the design of supramolecular complexes.  相似文献   

18.
19.
Three new 2,2′-diamino-4,4′-bithiazole (DABTZ) lead(II) complexes were synthesized and characterized by elemental analyses, IR-, 1H-NMR-, and 13C-NMR-spectroscopy. The single crystal X-ray structural analysis of [Pb(DABTZ)(μ-SCN)(μ-NO3)] n shows the complex to be a 1D chain polymer as a result of sequential thiocyanate and nitrate bridging. The Pb atoms are seven-coordinated by two nitrogen atoms of the 2,2′-diamino-4,4′-bithiazole, three nitrate and two thiocyanate ligands. The arrangement of the 2,2′-diamino-4,4′-bithiazole, nitrate and thiocyanate ligands does not suggest a gap in the coordination around the PbII ion, caused by a stereo-active lone pair of electrons on lead(II) where the coordination around the lead atoms is the less common holodirected.  相似文献   

20.
The reaction of Pb(ClO4)2 x xH2O, an ancillary ligand L, and two equivalents of Au(CN)2(-) gave a series of crystalline coordination polymers, which were structurally characterized. The ligands were chosen to represent a range of increasing basicity, to influence the stereochemical activity (i.e., p-orbital character) of the Pb(II) lone pair. The Pb(II) center in [Pb(1,10-phenanthroline)2][Au(CN)2]2 (1) is 8-coordinate, with a stereochemically inactive lone pair; all 8 Pb-N bonds are similar. The Au(CN)2(-) units propagate a 2-D brick-wall structure. In [Pb(2,2'-bipyridine)2][Au(CN)2]2 (2), the 8-coordinate Pb(II) center has asymmetric Pb-N bond lengths, indicating moderate lone pair stereochemical activity; the supramolecular structure forms a 1-D chain/ribbon motif. For [Pb(ethylenediamine)][Au(CN)2]2 (3), the Pb(II) is only 5-coordinate and extremely asymmetric, with Pb-N bond lengths from 2.123(7) to 3.035(9) A; a rare Pb-Au contact of 3.5494(5) A is also observed. The Au(CN)2(-) units connect the Pb(ethylenediamine) centers to form 1-D zigzag chains which stack via Au-Au interactions of 3.3221(5) A to yield a 2-D sheet. (207)Pb MAS NMR of the polymers indicates an increase in both the chemical shielding span and isotropic chemical shift with increasing Pb(II) coordination sphere anisotropy (from delta iso = -2970 and Omega = 740 for 1 to delta iso = -448 and Omega = 3980 for 3). The shielding anisotropy is positively correlated with Pb(II) p-character, and reflects a direct connection between the NMR parameters and lone-pair activity. Solid-state variable-temperature luminescence measurements indicate that the emission bands at 520 and 494 nm, for 1 and 2, respectively, can be attributed to Pb --> L transitions, by comparison with simple [Pb(L)2](ClO4)2 salts. In contrast, two emission bands for 3 at 408 and 440 nm are assignable to Au-Au and Pb-Au-based transitions, respectively, as supported by single-point density-functional theory calculations on models of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号