首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Physics of Atomic Nuclei》2008,71(12):2101-2109
A spectrometer is created to study relativistic hypernuclei produced with beams of accelerated nuclei from the Nuclotron facility (Dubna, JINR). Test runs have been carried out and the conclusion is drawn that the properties of the facility meet the requirements of the task of searching for unknown and studying poorly known neutron-rich hypernuclei. Original Russian Text ? A.V. Averyanov, S.A. Avramenko, V.D. Aksinenko, M.Kh. Anikina, S.N. Bazylev, V.P. Balandin, Yu.A. Batusov, Yu.A. Belikov, Yu.T. Borzunov, O.V. Borodina, A.I. Golokhvastov, L.B. Golovanov, C. Granja, A.B. Ivanov, Yu.L. Ivanov, A.Yu. Isupov, Z. Kohout, A.M. Korotkova, A.G. Litvinenko, J. Lukstiņš, A.I. Malakhov, L. Majling, O. Majlingova, P.K. Manyakov, V.T. Matyushin, I.I. Migulina, G.P. Nikolaevsky, O.B. Okhrimenko, A.N. Parfenov, N.G. Parfenova, V.F. Peresedov, S.N. Plyashkevich, S. Pospišil, P.A. Rukoyatkin, I.S. Saitov, R.A. Salmin, V.M. Slepnev, I.V. Slepnev, M. Solar, B. Sopko, V. Sopko, E.A. Strokovsky, V.V. Tereshchenko, A.A. Feshchenko, T. Horazdovsky, D. Chren, Yu.A. Chencov, I.P. Yudin, 2008, published in Yadernaya Fizika, 2008, Vol. 71, No. 12, pp. 2137–2145.  相似文献   

2.
《Physics of Atomic Nuclei》2003,66(3):503-508
We review the present status of the Baikal neutrino experiment. The structure and parameters of the neutrino telescope NT-200, which was put into operation in April 1998, are described. Selected methodological results are presented. Physics results cover separating up-going muons from atmospheric neutrinos, searches for neutrino events from WIMP annihilation, searches for magnetic monopoles, and high-energy neutrinos. From Yadernaya Fizika, Vol. 66, No. 3, 2003, pp. 530–535. Original English Text Copyright ? 2003 by Balkanov, Belolaptikov, Bezrukov, Budnev, Chensky, Danilchenko, Dzhilkibaev, Domogatsky, Fialkovsky, Gaponenko, O. Gress, T. Gress, Il'yasov, Klabukov, Klimov, Klimushin, Koshechkin, Konischev, Kulepov, Kuzmichev, Kuznetsov, Lubsandorzhiev, Micheev, Milenin, Mirgazov, Moseiko, Osipova, Panfilov, Pan'kov Parfenov, Pavlov, Pliskovsky, Pokhil, Poleshuk, Popova, Prosin, Rosanov, Rubzov, Semenei, Spiering, Streicher, Tarashansky, Vasiliev, Wischnewski, Yashin, Zhukov. This article was submitted by the authors in English.  相似文献   

3.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

4.
《Acoustical Physics》2006,52(5):495-504
High-frequency noise of Lake Baikal is investigated using a submersible self-contained instrument to determine the noise background for the acoustic detection of superhigh-energy neutrinos. It is found that, under stationary and uniform meteorological conditions, the integral noise power in the frequency band 1–50 kHz is virtually independent of depth and is 10–200 mPa or more, depending on the specific conditions. The noise itself contains multiple short pulses of different amplitudes and shapes. Original Russian Text ? V.M. Aĭnutdinov, V.A. Balkanov, I.A. Belolaptikov, L.B. Bezrukov, N.M. Budnev, R.V. Vasil’ev, R. Wischnewski, O.N. Gaponenko, R.Yu. Gnatovskiĭ, O.A. Gress, T.I. Gress, O.G. Grishin, I.A. Danil’chenko, Zh.-A.M. Dzhilkibaev, A.A. Doroshenko, A.N. Dyachok, G.V. Domogatskiĭ, V.A. Zhukov, A.M. Klabukov, A.I. Klimov, S.I. Klimushin, K.V. Konishchev, A.A. Kochanov, A.P. Koshechkin, V.F. Kulepov, L.A. Kuz’michev, B.K. Lubsandorzhiev, T. Mikolajskiĭ, M.B. Milenin, R.R. Mirgazov, S.P. Mikheev, é.A. Osipova, A.I. Panfilov, A.A. Pavlov, G.L. Pan’kov, L.V. Pan’kov, E.N. Pliskovskiĭ, V.A. Poleshchuk, E.G. Popova, P.G. Pokhil, V.V. Prosin, M.I. Rozanov, V.Yu. Rubtsov, B.A. Tarashchanskiĭ, S.V. Fialkovskiĭ, A.G. Chenskiĭ, B.A. Shaĭbonov, Ch. Spiering, O. Streicher, I.V. Yashin, 2006, published in Akusticheskiĭ Zhurnal, 2006, Vol. 52, No. 5, pp. 581–591.  相似文献   

5.
Summary MACRO is a large-area detector to be installed in hall B of the Gran Sasso Laboratory. Making use of scintillation counters, plastic streamer tubes, and track-etch detectors, it is designed to search for superheavy magnetic monopoles beyond the Parker bound, high-energy gamma and neutrino cosmic sourcs, and, more in general, exotic phenomena in the cosmic radiation. MACTO is an acronym for Monopole, Astrophysics and Cosmic Ray Observatory. The present collaboration: Bari(**)C. De Marzo, O. Erriquez, N. Giglietto andF. Posa. Bologna(**):M. Attolini, F. Baldetti, G. Giacomelli, F. Grianti, A. Margiotta andP. Serra. Caltech:B. Barish, C. Lane andG. Liu. CERN:P. Musset, G. Poulard andH. Sletten. Drexel:R. Steinberg. Laboratori Nazionali di Frascati dell'INFN:G. Battistoni, H. Bilokon, C. Bloise, P. Campana, V. Chiarella, A. Ciocio, A. Grillo, E. Iarocci, A. Marini, A. Rindi, F. Ronga, L. Satta, M. Spinetti, L. Trasatti andV. Valente. Indiana:S. Ahlen, B. Brabson, R. Heinz, S. Mufson, H. Ogren andP. Smith. Michigan:J. Musser, J. Stone, L. Sulak andG. Tarlé. Pisa(**):C. Angelini, A. Baldini, C. Bemporad, A. Cnops, V. Flaminio, G. Giannini, R. Pazzi andB. Saitta. Roma(**):G. Auriemma, M. De Vincenzi, E. Lamanna, G. Martellotti, S. Petrera, L. Petrillo, P. Pistilli, G. Rosa, A. Sciubba andM. Severi. Texas A&M:R. Webb. Torino:M. Arneodo, G. Borreani, P. Giubellino, F. Marchetto, A. Marzari, S. Palestini andL. Ramello.Virginia Tech:S. Torres andP. Trower. (**) Sezione INFN e Dipartimento di Fisica dell'Università.  相似文献   

6.
We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 1035 cm-2s-1. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes. Received: 25 November 2003, Revised: 21 October 2004, Published online: 18 January 2005 Conveners: F. Gianotti, M.L. Mangano, T. Virdee Contributors: S. Abdullin, G. Azuelos, A. Ball, D. Barberis, A. Belyaev, P. Bloch, M. Bosman, L. Casagrande, D. Cavalli, P. Chumney, S. Cittolin, S.Dasu, A. De Roeck, N. Ellis, P. Farthouat, D. Fournier, J.-B. Hansen, I. Hinchliffe, M. Hohlfeld, M. Huhtinen, K. Jakobs, C. Joram, F. Mazzucato, G.Mikenberg, A. Miagkov, M. Moretti, S. Moretti, T. Niinikoski, A. Nikitenko, A. Nisati, F. Paige, S. Palestini, C.G. Papadopoulos, F. Piccinini, R. Pittau, G. Polesello, E. Richter-Was, P. Sharp, S.R. Slabospitsky, W.H. Smith, S. Stapnes, G. Tonelli, E. Tsesmelis, Z. Usubov, L. Vacavant, J. van der Bij, A. Watson, M. Wielers A. Nikitenko: On leave of absence from ITEP, Moscow, Russia. F. Piccinini: On leave of absence from INFN, Sezione di Pavia, Italy.  相似文献   

7.
[1]J. Nagamatsu, N. Nakagava, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410 (2001) 63. [2]C. Buzea and T. Yamashita, Supercond. Sci. Techn. 14(2001) R115. [3]S. Budko, G. Lapertot, C. Petrovic, C.E. Gunningham, N.Anderson, and P.C. Canfield, Phys. Rev. Lett. 86 (2001)1877. [4]H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, Phys. Rev. Lett. 87 (2001) 127001. [5]J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov,and L.L. Boyer, Phys. Rev. Lett. 87 (2001) 4656. [6]A. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87(2001) 087005. [7]X.K. Chen, M.J. Konstantinovich, J.C. Irwin, D.D.Lawrie, and J.P. Frank, Phys. Rev. Lett. 87 (2001)157002. [8]H. Giublio, D. Roditchev, W. Sacks, R. Lamy, D.X.Thanh, J. Kleins, S. Miraglia, D. Fruchart, J. Markus,and P. Monod, Phys. Rev. Lett. 87 (2001) 177008. [9]F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jorgensen, Phys. Rev. Lett. 87 (2001) 04700. [10]S.V. Shulga, S.-L. Drechsler, H. Echrig, H. Rosner, and W. Pickett, Cond-mat/0103154 (2001). [11]A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y.Kong, O.K. Andersen, B.J. Gibson, K. Ahn, and R.K.Kremer, J. Phys. Condens. Matter 14 (2002) 1353. [12]H. Doh, M. Sigrist, B.K. Chao, and Sung-Ik Lee, Phys.Rev. Lett. 85 (1999) 5350. [13]I.N. Askerzade, N. Guclu, and A. Gencer, Supercond. Sci.Techn. 15 (2002) L13. [14]I.N. Askerzade, N. Guclu, A. Gencer, and A. Kiliq, Supercond. Sci. Techn. 15 (2002) L17. [15]I.N. Askerzade and A. Gencer, J. Phys. Soc. Jpn. 71(2002) 1637. [16]I.N. Askerzade, Physica C 397 (2003) 99. [17]V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I.Ivanova, A.A. Minakov, and A.P. Rusakov, Phys. Solid State 45 (2003) 1207. [18]A.A. Abrikosov, Fundamentals of the Theory of Metals,North-Holland, Amsterdam (1988). [19]M.N. Kunchur, S.I. Lee, and W.N. Kang, Phys. Rev. B 68 (2003) 064516.  相似文献   

8.
Y. Braiman  T. Egami 《Physica A》2009,388(10):1978-1984
We describe the oscillatory crack propagation for small propagation velocities at the atomistic scale that was recently observed for brittle metallic glasses [G. Wang, Y.T. Wang, Y.H. Liu, M.X. Pan, D.Q. Zhao, W.H. Wang, Appl. Lett. 89 (2006) 121909; G. Wang, D.Q. Zhao, H.Y. Bai, M.X. Pan, A.L. Xia, B.S. Han, X.K. Xi, Y. Wu, W.H. Wang, Phys. Rev. Lett. 98 (2007) 235501]. Based on a simple model of crack propagation [Y. Braiman, T. Egami, Phys. Rev. E, 77 (2008) 065101(R)], we derived and analyzed expressions for the feature size, oscillation period, and maximum strain accumulated in the material.  相似文献   

9.
We review the present status of the Lake Baikal neutrino experiment and present selected physics results obtained during the consecutive stages of the stepwise upgrade of the detector: from NT-36 to NT-96. The results cover atmospheric muons, neutrino events, neutrinos of very high energy, searches for neutrino events from WIMP annihilation, searches for magnetic monopoles, and environmental studies. We also describe an air Cherenkov array developed for studying the angular resolution of NT-200. From Yadernaya Fizika, Vol. 63, No. 6, 2000, pp. 1027–1036. Original English Text Copyright ? 2000 by Balkanov, Belolaptikov, Bezrukov, Budnev, Chensky, Danilchenko, Dzhilkibaev, Domogatsky, Doroshenko, Fialkovsky, Gaponenko, Garus, Gress, Kiss, Klimov, Klimushin, Koshechkin, Kuznetzov, Kulepov, Kuzmichev, Lovzov, Laudenskaite, Lubsandorzhiev, Milenin, Mirgazov, Moseiko, Netikov, Osipova, Panfilov, Parfenov, Pavlov, Pliskovsky, Pokhil, Popova, Rozanov, Sokalski, Spiering, Streicher, Tarashansky, Toht, Thon, Vasiliev, Wischnewski, Yashin. This article was submitted by the authors in English.  相似文献   

10.
ICP-AES法测定玉米秸秆中的微量元素含量   总被引:11,自引:4,他引:11  
采用高压硝化罐处理样品,以ICP-AES法测定了我国山西、北京、新疆、山东、内蒙、甘肃、陕西、吉林、云南、江苏10个不同省区不同品种玉米秸秆中Zn,Mg,Mn,Sr,Fe,Co,Ni和Se八种微量元素的含量。实验确定加入5 mL硝酸、3 mL高氯酸以及3 mL氢氟酸,将硝化罐置于130 ℃油浴中4 h,即可将样品完全消解。此方法测定各地区玉米秸秆中Zn的回收率在96.5%~103.8%之间,Mg的回收率在98.0%~102.5%之间,Mn的回收率在95.7%~104.1%之间,Sr的回收率在97.1%~103.2%之间,Fe的回收率在95.1%~101.3%之间,Co的回收率在95.1%~104.5%之间,Ni的回收率在97.0%~103.5%之间以及Se的回收率在95.9%~104.6%之间。所有元素测定结果的相对标准偏差均小于5.00%。方法简便、快速、灵敏度高、准确性好、可多元素同时测定,且对环境污染小。  相似文献   

11.
A method is developed for separating νN interactions from interactions involving an intranuclear cascade in νNe scattering at a mean neutrino energy of 145 GeV. The fraction of events featuring a cascade is evaluated by using a sample of νNe charged-current interactions. It is found that the multiplicity of charged particles in the forward direction takes the same value for events with and without a cascade for 4<W 2<550 GeV2. In the backward direction, cascade events have the charge multiplicity higher than the multiplicity for cascade-free events by 2.36 units. It is found that particles with momenta less than 2 GeV/c make a dominant contribution to the rescattering process. A depletion of the fastest particles for W 2<50 GeV2 is observed, in accord with the formation-time concept. From Yadernaya Fizika, Vol. 63, No. 9, 2000, pp. 1660–1669. Original English Text Copyright ? 2000 by Vataga, Murzin, Aderholz, Ammosov, Asratian, Barth, Bingham, Brucker, Burnstein, Chatterjee, Clayton, Ermolov, Erofeeva, Faulkner, Gapienko, Guy, Hanlon, Harigel, Ivanilov, Jain, G. Jones, M. Jones, Kafka, Kaftanov, Kalelkar, Kohli, Korablev, Kubantsev, Lauko, Lukina, Lys, Lyutov, Marage, Milburn, Mittra, Morrison, Moskalev, Myatt, Naon, Passmore, Peters, Rubin, Sacton, Schneps, J. Singh, S. Singh, Smart, Smirnova, Stamer, Varvell, Venus, Willocq. This article was submitted by the authors in English. Deceased. The author represents the E632 Collaboration  相似文献   

12.
《Physics of Atomic Nuclei》2004,67(11):2054-2057
NESTOR is a submarine high-energy muon and neutrino telescope, now under construction for deployment in the Mediterranean close to Greek shores. The first floor of NESTOR with 12 optical modules was deployed successfully in March 2003 together with the electronics system. All systems and the associated environmental monitoring units are operating properly and data are being recorded. The status of the NESTOR project is presented. We outline briefly the construction of the deepwater neutrino telescope, properties of the NESTOR site, infrastructure of the project, the deployment of the first floor, and its current operation. The first data are presented and plans for the next steps are summarized. From Yadernaya Fizika, Vol. 67, No. 11, 2004, pp. 2075–2078. Original English Text Copyright ? 2004 by Zhukov, Aloupis, Anassontzis, Arvanitis, Babalis, Ball, Bezrukov, Bourlis, Butkevich, Chinowsky, Christopoulos, Darsaklis, Dedenko, Elstrup, Fahrun, Gialas, Goudis, Grammatikakis, Green, Grieder, Karaevsky, Katrivanos, Keussen, Kiskiras, Knutz, Korostylev, Komlev, Kontakxis, Koske, Learned, Ledenev, Leisos, Limberopoulos, Ludvig, Makris, Manousakis-Katsikakis, Makropoulos, Matsuno, Mielke, Mihos, Minkowski, Mironovich, Mitiguy, Nounos, Nygren, Papageorgiou, Passera, Politis, Preve, Prybylsky, Rathley, Resvanis, Rosen, N. Schmidt, Th. Schmidt, Siotis, Shnyrev, Sopher, Staveris, Stavrakakis, Stokstad, Surin, Tsagli, Tsirigotis, Tsirmpas, Tzamarias, Vasiliev, Vaskin, Voigt, Vougioukas, Voulgaris, Zakharov, Ziabko. The authors represent the NESTOR Collaboration This article was submitted by the authors in English.  相似文献   

13.
The main physical results obtained with the Baikal neutrino telescope NT200 during the period 1998–2003 are reviewed: the limits for the diffuse flux of high-energy neutrinos, high-energy muons, and magnetic monopoles and the results of search for neutrinos from the center of the Earth due to annihilation of weakly interacting massive particles and from local neutrino sources. In April, 2005, the neutrino telescope NT200 was extended by introduction of three new strings, located at a distance of 100 m from the NT200 center. The new deep-water complex NT200+ has an effective volume for detecting cascades from high-energy neutrinos larger than that of NT200 by a factor of 4. At a cascade energy of 10 PeV, the effective volume of the new complex is 107 m3. Further development of the Baikal neutrino experiment is related to the design and fabrication of a detector with a volume of about 1 km3. Original Russian Text ? K.V.Antipin, V.M. Ainutdinov, V.A. Balkanov, I.A. Belolaptikov, D.A. Borshchev, N.M. Budnev, R.V. Vasil’ev, R. Vishnevskii, I.A. Danil’chenko, G.V. Domogatskii, A.A. Doroshenko, A.P. D’yachok, Zh.-A.M. Dzhilkibaev, O.N. Gaponenko, K.V. Golubkov, O.A. Gress, T.I. Gress, O.I. Grishin, V.A. Zhukov, A.M. Klabukov, A.I. Klimov, A.A. Kochanov, K.V. Konishchev, A.P. Koshechkin, L.A. Kuz’michev, V.F. Kulepov, E. Middel, T. Mikokaiskii, M.B. Milenin, R.R. Mirgazov, S.P. Mikheev, E.A. Osipova, G.L. Pan’kov, L.V. Pan’kov, A.I. Panfilov, D.P. Petukhov, E.N. Pliskovskii, P.G. Pokhil, V.A. Poleshchuk, E.G. Popova, V.V. Prosin, M.I. Rozanov, V.Yu. Rubtsov, Yu.A. Semenei, B.A. Tarashchanskii, S.V. Fialkovskii, B.K. Shaibonov, A.A. Sheifler, A.V. Shirokov, K. Spiring, I.V. Yashin, 2007, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2007, Vol. 71, No. 4, pp. 597–601.  相似文献   

14.
Detrended fluctuation analysis (DFA) [C.-K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, F. Sciortino, M. Simons, H.E. Stanley, Nature 356 (1992) 168] of volatility series has been proposed to identify possible nonlinear/multifractal signatures in the given empirical sample [Y. Ashkenazy, P.Ch. Ivanov, S. Havlin, C.-K. Peng, A.L. Goldberger, H.E. Stanley, Phys. Rev. Lett. 86 (2001) 1900; Y. Ashkenazy, S. Havlin, P. Ch. Ivanov, C.-K. Peng, V. Schulte-Frohlinde, H.E. Stanley, Physica A. 323 (2003) 19; T. Kalisky, Y. Ashkenazy, S. Havlin, Phys. Rev. E 72 (2005) 011913]. Long-range volatility correlation can be an outcome of static as well as dynamical nonlinearity. In order to argue in favor of dynamical nonlinearity, surrogate testing is used in conjunction with volatility analysis [Y. Ashkenazy, P.Ch. Ivanov, S. Havlin, C.-K. Peng, A.L. Goldberger, H.E. Stanley, Phys. Rev. Lett. 86 (2001) 1900; Y. Ashkenazy, S. Havlin, P. Ch. Ivanov, C.-K. Peng, V. Schulte-Frohlinde, H.E. Stanley, Physica A. 323 (2003) 19; T. Kalisky, Y. Ashkenazy, S. Havlin, Phys. Rev. E 72 (2005) 011913]. In this brief communication, surrogate testing of volatility series from long-range correlated monofractal noise and their static, invertible nonlinear transforms is investigated. Long-range correlated noise is generated from fractional auto regressive integrated moving average (FARIMA) (0, d, 0), with Gaussian and non-Gaussian innovations. We show significant deviation in the scaling behavior between the empirical sample and the surrogate counterpart at large time-scales in the case of FARIMA (0, d, 0) with non-Gaussian innovations whereas no such discrepancy was observed in the case of Gaussian innovations. The results encourage cautious interpretation of surrogate analysis of volatility series in the presence of non-Gaussian innovations.  相似文献   

15.
Femtosecond lasers have a unique ability of processing bulk transparent materials for various applications such as micromachining, waveguide manufacturing, and photonic bandgap structures just to name a few. These applications depend on the formation of micron or submicron size features that are known to be index modifications to the bulk substrate [H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, Q. Gong, J. Opt. A: Pure Appl. Opt. 6 (2004) 787]. To the best of our knowledge the physical understanding of how these index-modified features are formed is still unknown, but many good theories exist such as Petite et al. [G. Petite, P. Daguzan, S. Guizard, P. Martin, in: IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, vol. 15, IEEE, 1995, pp. 40-44] or Tien et al. [A. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Phys. Rev. Lett. 82 (1999) 3883]. In this Letter the question on the physical cause for index changes is investigated by the combined efforts between Wright-Patterson AFB (WPAFB) and the University of Dayton (UD) using numerous imaging equipment such as TEM, AFM, NSOM, Nomarski microscopy, X-ray crystallography, Raman spectroscopy, and even diffraction efficiency experiments. With all the combined imaging equipment this research is able to present valuable data and deduce plausible theories of the physics of the index modification mechanism.  相似文献   

16.
The effect of hot pressing conditions on the characteristics of the crystalline and magnetic structures of Cr-doped lanthanum-strontium manganites has been investigated for the first time using X-ray diffraction, electron microscopy, magneto-optical visualization of magnetic flux, ferromagnetic resonance, and magnetic measurements. It is shown that application of pressure during sintering affects the concentration of differentvalence ions and structural vacancies and phase separation in the manganites studied. Original Russian Text ? N.A. Vybornov, F.D. Aliev, V.K. Karpasyuk, A.A. Pankratov, A.V. Saitov, V.V. Senin, S.G. Titova, L.S. Uspenskaya, 2008, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2008, Vol. 72, No. 10, pp. 1506–1509.  相似文献   

17.
采集了石河子城区32个站点的道路尘土样本,测定了样品中10种非常规监测微量元素(B,Be,Bi,Co,Ga,Li,Sb,Sn,Tl,V)的含量。并采用地积累指数法、元素相关性分析和主成分分析法对尘土中的微量元素污染程度和来源进行了分析。结果表明:道路尘土中微量B,Be,Bi,Co,Ga,Li,Sb,Sn,Tl和V的平均含量分别为41.11,1.68,0.52,13.58,36.26,24.91,3.37,3.64,0.42,72.66 mg·kg-1。其中,Co,Li和Tl的平均含量均低于新疆土壤元素背景值,B,Be和V的平均含量和新疆土壤元素背景值相似,Bi,Ga,Sb和Sn的平均含量高于新疆和世界土壤元素背景值。地积累指数计算结果表明:B,Be,Co,Ga,Li,Tl和V污染级数为0,说明无污染,而Sb,Bi和Sn污染较为严重(污染等级分别为2,1,1)。元素相关性分析和主成分分析多元统计方法计算结果表明,Bi,Co,Sb和Tl主要是人为来源,B,Be,Li和V主要是自然来源,而Ga和Sn可能受自然因素和人为因素的共同影响。  相似文献   

18.
Oak Ridge National Laboratory, Tennessee, USA, ORLaND is a collaboration proposing a major neutrino physics facility at the Spallation Neutrino Source (SNS) at the Oak Ridge National Laboratory. An underground bunker is proposed adjacent to the first target station of the SNS. The bunker is designed to house one large detector (2000 t) and a number of smaller (200 t) detectors. A comprehensive program of neutrino experiments is being developed that could span the lifetime of the Spallation Source. From Yadernaya Fizika, Vol. 63, No. 6, 2000, pp. 1082–1086. Original English Text Copyright ? 2000 by Avignone III, Anderso, Awes, Berridge, Bilpuch, Britton, Bryan, Bugg, Burman, Busenitz, Carter, Chatterjee, Cianciolo, Cochran, Cohn, Danilov, De-Brackeleer, Degtiarenko, Efremenko, Elaasar, Fazely, Frank, Gabriel, Gould, Gudkov, Gunasingha, Handler, Hart, Imlay, Jagadish, Kamyshkov, Khosrovi, Koetke, Lane, Manweiler, Metcalf, Mezzacappa, Mo, Nosik, Nummaker, Nussinov, Piepke, Plasil, Reidy, Rosenfeld, Smith, Stancu, Stanislaus, Steinberg, Svoboda, Tashakkori, Tornow, Van Dalen, Walker, Watson, Wintenberg, Wolf, Wright, Zel’dovich, Zhang. This article was submitted by the authors in English.  相似文献   

19.
S. I. Vavilov State Optical Institute, Russia, 199034, St. Peterburg, Birzhevaya Liniya, 12. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 62, No. 3, pp. 38–42, May–June, 1995.  相似文献   

20.
应用ICP-MS测定野生肉苁蓉中的稀土元素   总被引:3,自引:0,他引:3  
中药材中的微量元素含量引起人们的普遍关注。应用ICP-MS分析了新疆产野生肉苁蓉中稀土元素的含量, La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu,的浓度范围在1~260 ng·g-1之间,稀土元素之间含量差异比较大。在各种稀土元素中,新疆野生肉苁蓉含量超过100 ng·g-1的有三种,分别是La(144.89 ng·g-1,DW),Ce(259.75 ng·g-1,DW)和Nd(133.25 ng·g-1,DW);含量最少的三种是Eu(6.10 ng·g-1,DW),Ho(3.42 ng·g-1,DW)和Lu(1.15 ng·g-1,DW)。稀土元素在野生肉苁蓉中的分配除了自身的吸收分配特性以外,还要受土壤等环境因素的影响,分配机理需要进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号