首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A class of N-parameter Gaussian processes are introduced,which are more general than the N-parameter Wiener process.The definition of the set generated by exceptional oscillations of a class of these processes is given,and then the Hansdorff di- mension of this set is defined.The Hausdorff dimensions of these processes are studied and an exact representative for them is given,which is similar to that for the two-parameter Wiener process by Zacharie(2001).Moreover,the time set considered is a hyperrectangle which is more general than a hyper-square used by Zacharie(2001).For this more gen- eral case,a Fernique-type inequality is established and then using this inequality and the Slepian lemma,a Lévy's continuity modulus theorem is shown.Independence of incre- ments is required for showing the representative of the Hausdorff dimension by Zacharie (2001).This property is absent for the processes introduced here,so we have to find a different way.  相似文献   

2.
A class of N-parameter Gaussian processes are introduced, which are more general than the N-parameter Wiener process. The definition of the set generated by exceptional oscillations of a class of these processes is given, and then the Hausdorff dimension of this set is defined. The Hausdorff dimensions of these processes are studied and an exact representative for them is given, which is similar to that for the two-parameter Wiener process by Zacharie (2001). Moreover, the time set considered is a hyperrectangle which is more general than a hyper-scluare used by Zacharie (2001). For this more general case, a Fernique-type inequality is established and then using this inequality and the Slepian lemma, a Levy's continuity modulus theorem is shown. Independence of increments is required for showing the representative of the Hausdorff dimension by Zacharie (2001). This property is absent for the processes introduced here, so we have to find a different way.  相似文献   

3.
Fluvial processes comprise water flow, sediment transport and bed evolution, which normally feature distinct time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity region in line with local flow scenario and the bed deforms in comparison with the flow, which literally dictates if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport, respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modelling is critical for fluvial processes characterized by rapid bed variation. Applications are outlined on very active bed load sediment transported by flash floods and landslide dam break floods.  相似文献   

4.
In this paper, we introduce the definition of a multi-parameter fractional Lévy process and its local time, and show its decomposition. Using the decomposition, we prove existence and joint continuity of its local time.  相似文献   

5.
Thermodynamics of irreversible processes can be included into the framework of Lagrange formalism. This formalism presents a unified method for reversible and irreversible processes. As a remarkable fact the first and the second law of thermodynamics are derived in Lagrange formalism by means of straightforward procedures. The whole information on the dynamics of a system is included in one function only, namely in its Lagrangian.In this paper the theory is presented in two courses. The first one offers an almost qualitative insight into the structure of the theory; the second one is concerned with the associated mathematics in some detail. The theory is illustrated by three representative examples: the style of the paper is chosen as to stimulate the discussions at a workshop and a school on the state-of-art of non-equilibrium thermodynamics of complex fluids, Oxford, 2000.  相似文献   

6.
Size-reduction systems have been extensively used in industry for many years. Nevertheless, reliable engineering tools to be used to predict the comminution of particles are scarce. Computational fluid dynamics(CFD)–discrete element model(DEM) numerical simulation may be used to predict such a complex phenomenon and therefore establish a proper design and optimization model for comminution systems.They may also be used to predict attrition in systems where particle attrition is significant. Therefore,empirical comminution functions(which are applicable for any attrition/comminution process), such as:strength distribution, selection, equivalence, breakage, and fatigue, have been integrated into the threedimensional CFD–DEM simulation tool. The main drawback of such a design tool is the long computational time required owing to the large number of particles and the minute time-step required to maintain a steady solution while simulating the flow of particulate materials with very fine particles.The present study developed several methods to accelerate CFD–DEM simulations: reducing the number of operations carried out at the single-particle level, constructing a DEM grid detached from the CFD grid enabling a no binary search, generating a sub-grid within the DEM grid to enable a no binary search for fine particles, and increasing the computational time-step and eliminating the finest particles in the simulation while still tracking their contribution to the process.The total speedup of the simulation process without the elimination of the finest particles was a factor of about 17. The elimination of the finest particles gave additional speedup of a factor of at least 18.Therefore, the simulation of a grinding process can run at least 300 times faster than the conventional method in which a standard no binary search is employed and the smallest particles are tracked.  相似文献   

7.
Size-reduction systems have been extensively used in industry for many years. Nevertheless, reliable engineering tools to be used to predict the comminution of particles are scarce. Computational fluid dynamics (CFD)–discrete element model (DEM) numerical simulation may be used to predict such a complex phenomenon and therefore establish a proper design and optimization model for comminution systems. They may also be used to predict attrition in systems where particle attrition is significant. Therefore, empirical comminution functions (which are applicable for any attrition/comminution process), such as: strength distribution, selection, equivalence, breakage, and fatigue, have been integrated into the three-dimensional CFD–DEM simulation tool. The main drawback of such a design tool is the long computational time required owing to the large number of particles and the minute time-step required to maintain a steady solution while simulating the flow of particulate materials with very fine particles.The present study developed several methods to accelerate CFD–DEM simulations: reducing the number of operations carried out at the single-particle level, constructing a DEM grid detached from the CFD grid enabling a no binary search, generating a sub-grid within the DEM grid to enable a no binary search for fine particles, and increasing the computational time-step and eliminating the finest particles in the simulation while still tracking their contribution to the process.The total speedup of the simulation process without the elimination of the finest particles was a factor of about 17. The elimination of the finest particles gave additional speedup of a factor of at least 18. Therefore, the simulation of a grinding process can run at least 300 times faster than the conventional method in which a standard no binary search is employed and the smallest particles are tracked.  相似文献   

8.
A combined physico-mechanical approach to research and modeling of forming processes for metals with predictable properties is developed. The constitutive equations describing large plastic deformations under complex loading are based on both plastic flow theory and continuum damage mechanics. The model which is developed in order to study strongly plastically deformed materials represents their mechanical behavior by taking micro-structural damage induced by strain micro-defects into account. The symmetric second-rank order tensor of damage is applied for the estimation of the material damage connected with volume, shape, and orientation of micro-defects. The definition offered for this tensor is physically motivated since its hydrostatic and deviatoric parts describe the evolution of damage connected with a change in volume and shape of micro-defects, respectively. Such a representation of damage kinetics allows us to use two integral measures for the calculation of damage in deformed materials. The first measure determines plastic dilatation related to an increase in void volume. A critical amount of plastic dilatation enables a quantitative assessment of the risk of fracture of the deformed metal. By means of an experimental analysis we can determine the function of plastic dilatation which depends on the strain accumulated by material particles under various stress and temperature-rate conditions of forming. The second measure accounts for the deviatoric strain of voids which is connected with a change in their shape. The critical deformation of ellipsoidal voids corresponds to their intense coalescence and to formation of large cavernous defects. These two damage measures are important for the prediction of the meso-structure quality of metalware produced by metal forming techniques. Experimental results of various previous investigations are used during modeling of the damage process.   相似文献   

9.
An essential part in modeling out-of-equilibrium dynamics is the formulation of irreversible dynamics. In the latter, the major task consists in specifying the relations between thermodynamic forces and fluxes. In the literature, mainly two distinct approaches are used for the specification of force–flux relations. On the one hand, quasi-linear relations are employed, which are based on the physics of transport processes and fluctuation–dissipation theorems (de Groot and Mazur in Non-equilibrium thermodynamics, North Holland, Amsterdam, 1962, Lifshitz and Pitaevskii in Physical kinetics. Volume 10, Landau and Lifshitz series on theoretical physics, Pergamon Press, Oxford, 1981). On the other hand, force–flux relations are also often represented in potential form with the help of a dissipation potential (?ilhavý in The mechanics and thermodynamics of continuous media, Springer, Berlin, 1997). We address the question of how these two approaches are related. The main result of this presentation states that the class of models formulated by quasi-linear relations is larger than what can be described in a potential-based formulation. While the relation between the two methods is shown in general terms, it is demonstrated also with the help of three examples. The finding that quasi-linear force–flux relations are more general than dissipation-based ones also has ramifications for the general equation for non-equilibrium reversible–irreversible coupling (GENERIC: e.g., Grmela and Öttinger in Phys Rev E 56:6620–6632, 6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005). This framework has been formulated and used in two different forms, namely a quasi-linear (Öttinger and Grmela in Phys Rev E 56:6633–6655, 1997, Öttinger in Beyond equilibrium thermodynamics, Wiley Interscience Publishers, Hoboken, 2005) and a dissipation potential–based (Grmela in Adv Chem Eng 39:75–129, 2010, Grmela in J Non-Newton Fluid Mech 165:980–986, 2010, Mielke in Continuum Mech Therm 23:233–256, 2011) form, respectively, relating the irreversible evolution to the entropy gradient. It is found that also in the case of GENERIC, the quasi-linear representation encompasses a wider class of phenomena as compared to the dissipation-based formulation. Furthermore, it is found that a potential exists for the irreversible part of the GENERIC if and only if one does for the underlying force–flux relations.  相似文献   

10.
The onedimensional problem of the propagation of a perturbation front from a point instantaneous source for transport processes with spatial–temporal nonlocality is considered. A class of nonlocality kernels with a singularity of the form t–1 for small times is used. The front propagation speed v is calculated and an expression for perturbations in the vicinity of the front is derived in the form of an asymptotic series in powers of the parameter = t – xv–1.  相似文献   

11.
Shock-induced yield enhancement has been observed in implantation of recoil atoms into metallocene and its-cyclodextrin (CD) inclusion compounds, as in the case of metal-diketonate compounds previously studied. The enhancement, however, occurs at much lower energy compared with that in metal-diketonates. In acetylruthenocene and benzoylruthenocene--CD inclusion compounds, various aspects of molecular rocket reaction have been discussed.This article was processed by the author using Springer-Verlag TEX PJour2g macro package version 1.  相似文献   

12.
In this paper,using the equilibrium equations and boundary conditionsof elastic stability problem of Новожилов and the method of mathematicaltheory of elasticity,we solve some elastic stability problems,which werestudied byищлинскииandвоицеховская,and obtained more reason-able results than theirs.  相似文献   

13.
Denoting by the stress tensor, by the linearized strain tensor, by A the elasticity tensor, and assuming that is a convex potential, the inclusion accounts for nonlinear viscoelasticity, and encompasses both the linear Kelvin–Voigt model of solid-type viscoelasticity and the Prager model of rigid plasticity with linear kinematic strain-hardening. This relation is assumed to represent the constitutive behavior of a space-distributed system, and is here coupled with the dynamical equation. An initial- and boundary-value problem is formulated, and the existence and uniqueness of the solution are proved via classical techniques based on compactness and monotonicity. A composite material is then considered, in which the function and the tensor A rapidly oscillate in space. A two-scale model is derived via Nguetseng’s notion of two-scale convergence. This provides a detailed account of the mesoscopic state of the system. Any dependence on the fine-scale variable is then eliminated, and the existence of a solution of a new single-scale macroscopic model is proved. The final outcome is at variance with the nonlinear extension of the generalized Kelvin–Voigt model, which is based on an apparently unjustified mean-field-type hypothesis.  相似文献   

14.
A model of selforganization of cracks arising in a rock specimen (granite) compressed by a press is proposed. The model is based on the assumption of acoustic wave interaction between the cracks. To construct the model of selforganization of cracks, solutions of the Fokker–Planck equation are used. The experimentally observed spontaneous increase in the activity of acoustic emission, spatial and temporal clusterization, and formation of a fractal structure in rock specimens under constant and slowly varying loads are explained.  相似文献   

15.
In the paper the theoretical analysis of bounds and self-consistent estimates of overall properties of linear random polycrystals composed of arbitrarily anisotropic grains is presented. In the study two invariant decompositions of Hooke’s tensors are used. The applied method enables derivation of novel expressions for estimates of the bulk and shear moduli, which depend on invariants of local stiffness tensor. With use of these expressions the materials are considered for which at the local level constraints are imposed on deformation or some stresses are unsustained.  相似文献   

16.
《Meccanica》2000,35(6):587-590

Volume Contents

Table of Contents of Volume 35 – 2000  相似文献   

17.
《Meccanica》2001,36(6):755-758

Volume Contents

Table of Contents of Volume 36 – 2001  相似文献   

18.
The products of laser cutting of metals on an automated laser setup are investigated. Results of model experiments are presented, where soft wax was used instead of metal transforming into the melt; soft wax filled a narrow flat slot between two glass plates and was removed by a heated air stream. The physical processes of melting of the liquidwax film, its destruction, and entrainment by the gas jet being assumed to be analogous to the processes of metalmelt spraying inside the cut in fullscale experiments, the characteristic size of drops formed thereby is evaluated. The modeling results are in qualitative agreement with the results of fullscale experiments. It is shown that the quality of laser cutting of metals directly depends on the character of spraying of the liquid melt and the process of its removal.  相似文献   

19.
This paper presents a method of reliability analysis of structural members, considering both the load and the resistance to be composed of several random components. The analysis is based on the theory of linear statistical approximation, extended to random processes. To illustrate application of the present theory, numerical calculations are carried out on a singly reinforced concrete beam with rectangular cross section and on a steel compression member with random initial deflections  相似文献   

20.
The paper considers the application of the method of direct separation of motions to the investigation of distributed systems. An approach is proposed which allows one to apply the method directly to the initial equation of motion and to satisfy all boundary conditions, arising for both slow and fast components of motion. The methodology is demonstrated by means of a classical problem concerning the so-called Indian magic rope trick (Blekhman et al. in Selected topics in vibrational mechanics, vol. 11, pp. 139–149, [2004]; Champneys and Fraser in Proc. R. Soc. Lond. A 456:553–570, [2000]; in SIAM J. Appl. Math. 65(1):267–298, [2004]; Fraser and Champneys in Proc. R. Soc. Lond. A 458:1353–1373, [2002]; Galan et al. in J. Sound Vib. 280:359–377, [2005]), in which a wire with an unstable upper vertical position is stabilized due to vertical vibration of its bottom support point. The wire is modeled as a heavy Bernoulli–Euler beam with a vertically vibrating lower end. As a result of the treatment, an explicit formula is obtained for the vibrational correction to the critical flexural stiffness of the nonexcited system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号