首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Measuring velocity spectra in turbulent flows requires methods providing a high temporal resolution and a low measurement uncertainty. Hot-wire anemometry is often used, but it is intrusive. Laser Doppler anemometry is non-intrusive, but due to the statistical arrival of individual tracers provides no constant measurement rate. We therefore propose the use of Doppler global velocimetry (DGV), which is a contactless method allowing temporally equidistant measurements of continuous signals. Additionally, 2d measurements are possible instead of single point measurements. The commonly applied slow cameras are substituted by a fibre coupled detector array consisting of 25 avalanche photo diodes, which increases temporal resolution up to 10 μs. Contrarily to conventional DGV, a sinusoidal laser frequency modulation enables omitting the reference detector array. A correction of beam splitting and image misalignment errors is thus not necessary, but disturbances due to temporal fluctuations of the scattered light can occur and have to be reduced by increasing the modulation frequency. We validate the proposed system capability of synchronously measuring velocity spectra at multiple points in turbulent flows by presenting experimental results. The acquired velocity spectra in a wind tunnel experiment show good agreement with hot-wire comparison measurements within 0.1 m/s. An uncertainty analysis is given, which allows the achievable measurement uncertainty to be estimated as a function of the desired temporal resolution. An uncertainty down to 0.2 m/s can, for example, be achieved assuming a desired temporal resolution of 1 ms. These promising results open new perspectives for turbulence and correlation studies in flows such as to investigate the turbulence characteristics behind a truncated cylinder attached to a plate or the inlet of an aircraft turbine for flow characterisation in industry.  相似文献   

2.
Doppler Global Velocimetry (DGV) is an imaging flow measurement technique which allows the measurement of the velocity distribution in a plane. In DGV the frequency shift of scattered light from moving particles within the flow is used to determine the local flow velocity. Heterodyne Doppler Global Velocimetry (HDGV) is a new approach which combines the imaging and geometrical characteristics of DGV with the measurement principles of reference beam laser Doppler anemometry. The frequency shifted scattered light from the flow tracers is heterodyned with a reference beam from the same light source. Due to interference the result of this superposition is a harmonic intensity modulated signal. This signal is detected using a smart pixel detector array to obtain the velocity distribution. Two different experiments are presented. The first experiment compares the measured velocity distribution of a rotating disk with its actual velocity. The second experiment demonstrates the capability of the technique to measure a real flow.  相似文献   

3.
多普勒全场测速技术的进展   总被引:1,自引:0,他引:1  
张洪军  吕进 《力学进展》2007,37(3):428-442
多普勒全场测速(Doppler global velocimetry)是一种基于分子滤波原理来测量散射光多普勒频移, 从而测量平面内流动速度场的技术, 主要应用于流体力学、空气动力学和燃烧学实验研究中, 尤其适用于较高马赫数流场测量. 研究人员也称其为平面多普勒测速(planar Doppler velocimetry)、吸收-滤波平面多普勒测速(Absorption filtered planarDoppler velocimetry), 滤波瑞利散射技术(filtered Rayleigh scattering)等. 本文对多普勒全场测速技术的工作原理、结构组成、数据处理、发展趋势等进行了比较全面的介绍.   相似文献   

4.
Control of flow separation from the deflected flap of a high-lift airfoil up to Reynolds numbers of 240,000 (15 m/s) is explored using a single dielectric barrier discharge (DBD) plasma actuator near the flap shoulder. Results show that the plasma discharge can increase or reduce the size of the time-averaged separated region over the flap depending on the frequency of actuation. High-frequency actuation, referred to here as quasi-steady forcing, slightly delays separation while lengthening and flattening the separated region without drastically increasing the measured lift. The actuator is found to be most effective for increasing lift when operated in an unsteady fashion at the natural oscillation frequency of the trailing edge flow field. Results indicate that the primary control mechanism in this configuration is an enhancement of the natural vortex shedding that promotes further momentum transfer between the freestream and separated region. Based on these results, different modulation waveforms for creating unsteady DBD plasma-induced flows are investigated in an effort to improve control authority. Subsequent measurements show that modulation using duty cycles of 50–70% generates stronger velocity perturbations than sinusoidal modulation in quiescent conditions at the expense of an increased power requirement. Investigation of these modulation waveforms for trailing edge separation control similarly shows that additional increases in lift can be obtained. The dependence of these results on the actuator carrier and modulation frequencies is discussed in detail.  相似文献   

5.
Detailed measurements in a developed particle-laden horizontal channel flow (length 6 m, height 35 mm, the length is about 170 channel heights) are presented using phase-Doppler anemometry for simultaneous determination of air and particle velocity. The particles were spherical glass beads with mean diameters in the range of 60 µm-1 mm. The conveying velocity could be varied between about 10 m/s and 25 m/s, and the particle mass loading could reach values of about 2 (the mass loading is defined as the ratio of particle to gas phase mass flow rates), depending on particle size. For the first time, the degree of wall roughness could be modified by exchanging the wall plates. The influence of these parameters and the effect of inter-particle collisions on the profiles of particle mean and fluctuating velocities and the normalised concentration in the developed flow were examined. It was shown that wall roughness decreases the particle mean velocity and enhances fluctuating velocities due to irregular wall bouncing and an increase in wall collision frequency, i.e. reduction in mean free path. Thereby, the larger particles are mainly more uniformly distributed across the channel, and gravitational settling is reduced. Both components of the particle velocity fluctuation were reduced with increasing mass loading due to inter-particle collisions and the momentum loss involved. Moreover, the effect of the particles on the air flow and the turbulent fluctuations was studied on the basis of profiles in the developed flow and turbulence spectra determined for the streamwise velocity component. In addition to the effect of particle size and mass loading on turbulence modulation, the influence of wall roughness was analysed. It was clearly shown that increasing wall roughness also results in a stronger turbulence dissipation due to two-way coupling.  相似文献   

6.
A specially designed Doppler global velocimetry system (DGV, planar Doppler velocimetry) was developed and installed in a high-speed cryogenic wind tunnel facility for use at free stream Mach numbers between 0.2 and 0.88, and pressures between 1.2 bar and 3.3 bar. Particle seeding was achieved by injecting a mixture of gaseous nitrogen and water vapor into the dry and cold tunnel flow, which then immediately formed a large amount of small ice crystals. Given the limited physical and optical access for this facility, DGV is considered the best choice for non-intrusive flow field measurements. A multiple branch fiber imaging bundle attached to a common DGV image receiving system simultaneously viewed a common area in the flow field from three different directions through the wind tunnel side walls. The complete imaging system and fiber-fed light sheet generators were installed inside the normally inaccessible pressure plenum surrounding the wind tunnels test section. The system control and frequency-stabilized laser system were placed outside of the pressure shell. With a field of view of 300×300 mm2, the DGV system acquired flow maps at a spatial resolution of 3×3 mm2 in the wake of simple vortex generators as well as in the wake of different wing-tip devices on a half-span aircraft model. Although problems mainly relating to light reflections and icing on the observation windows significantly impaired part of the measurements, the remotely controlled hardware operated reliably over the course of three months.  相似文献   

7.
In this numerical study, an algebraic flame surface wrinkling (AFSW) reaction submodel based on the progress variable approach is implemented in the large-eddy simulation (LES) context and validated against the triangular stabilized bluff body flame configuration measurements i.e. in VOLVO test rig. The quantitative predictability of the AFSW model is analyzed in comparison with another well validated turbulent flame speed closure (TFC) combustion model in order to help assess the behaviour of the present model and to further help improve the understanding of the flow and flame dynamics. Characterization of non-reacting (or cold) and reacting flows are performed using various subgrid scale models for consistent grid size variation with 300,000 (coarse), 1.2 million (intermediate) and 2.4 million (fine) grid cells. For non-reacting flows at inlet velocity of 17?m/s and inlet temperature 288?K, coarse grid leads to over prediction of turbulence quantities due to low dissipation at the early stage of flow development behind the bluff body that convects downstream eventually polluting the resulting solution. The simulated results with the intermediate (and fine) grid for mean flow and turbulence quantities, and the vortex shedding frequency (fs) closely match experimental data. For combusting flows for lean propane/air mixtures at 35?m/s and 600?K, the vortex shedding frequency increase threefold compared with cold scenario. The predicted results of mean, rms velocities and reaction progress variable are generally in good agreement with experimental data. For the coarse grid the combustion predictions show a shorter recirculation region due to higher turbulent burning rate. Finally, both cold and reacting LES data are analyzed for uncertainty in the solution using two quality assessment techniques: two-grid estimator by Celik, and model and grid variation by Klein. For both approaches, the resolved turbulent kinetic energy is used to estimate the grid quality and error assessment. The quality assessment reveals that the cold flows are well resolved even on the intermediate mesh, while for the reacting flows even the fine mesh is locally not sufficient in the flamelet region. The Klein approach estimates that depending on the recirculation region in cold scenario both numerical and model errors rise near the bluff-body region, while in combusting flows these errors are significant behind the stabilizing point due to preheating of unburned mixture and reaction heat release. The total error mainly depends on the numerical error and the influence of model error is low for this configuration.  相似文献   

8.
Measurement of time-averaged velocity, density, temperature, and turbulence velocity fluctuations in sparsely seeded gas flows using a non-intrusive, point-wise technique based on Rayleigh and Mie scattering is discussed. A Fabry-Perot interferometer (FPI) is used to spectrally resolve laser light scattered by molecules and particulates in gas flows. The spectral content of the scattered light provides information about velocity, density, and temperature of the gas. A CCD camera is used to record images of the fringes formed by scattered light passing through the interferometer. Models of the spectral components are used in a least squares fitting routine to estimate the parameters from fringe images. Flow measurements are presented for subsonic and supersonic jet flows. The application range for this technique is mostly for high velocity situations (>25 m/s). Velocity, density, temperature, and turbulence velocity fluctuations were determined with accuracies within 5 m/s, 4%, 2%, and 5 m/s, respectively.  相似文献   

9.
Further experimental results on transition of boundary layer flows in the presence of streamwise counter-rotating Goertler vortices were obtained on concave test surface of 3.0 m radius of curvature. The test surface was mounted in a perspex (plexiglass) curved rectangular section duct connected to a low speed, blow down type, wind tunnel for a free-stream velocity range of 2.0 to 13.1 m/s. Velocity measurements were made using a single sensor hot-wire anemometer and boundary layer flow transitions were detected by a frequency spectrum method. The experimental results show a simple linear relationship between transition start position and free-stream velocity, and lie well between the limit lines of Goertler number transition criteria. It is found that the onset of transition at the flow upwash region occurs when the Goertler number based on the boundary layer momentum thickness reaches a value of about 7.5.  相似文献   

10.
Transition of boundary layer flows in the presence of longitudinal counter-rotating Goertler vortices was experimentally investigated on a concave surface of 1.0 m radius of curvature in a perspex (plexiglass) curved rectangular duct connected to a low speed wind tunnel for a free-stream velocity range of 5.7–11.8 m/s. Quantitative measurements were carried out using a single sensor hot-wire anemometer, while the boundary layer transitions were detected using frequency spectrum method. The results confirm that in the presence of Goertler vortices, transition is initiated at the boundary layer upwash regions, and also agree well with the predicted values obtained using the two existing empirical transition criteria for concave surface boundary layer flows.  相似文献   

11.
A low and audio frequency viscometer with a frequency range 2 Hz to 1 kHz and possibly up to 10 kHz is described, which shears a liquid sample (shear volume < 0.3 ml) between an oscillating glass plate and the wall of a cuvette. Alternating velocity and force exerted on the oscillating plate are measured by a mechanical impedance head, designed for the frequency range 1 Hz to 10 kHz. This device permits the determination of frequency dependent viscous liquid properties. Real and imaginary part of the complex viscosity can be obtained from the complex mechanical impedance. Inertial forces from the oscillating plate are compensated in an adjustable electronic circuit.Significant shear parameters, as the frequency, the exciting wave form and the amplitude, can be set independently. In this way viscous spectral data and also nonlinear properties can be studied, e.g., in aqueous DNA solutions. In addition, processes with time constants >0.1 s in (relaxing) viscoelastic systems, which do not obey the Boltzmann superposition principle, can be monitored by means of the (nonlinear) modulation of an LF sampling signal. Some examples of measurements will be shown. Model calculations for water and for glycerol give typical values for the complex impedances to be obtained with this oscillatory rheometric device.  相似文献   

12.
Several studies have shown that a surface dielectric barrier discharge (DBD) may be used as an electrohydrodynamic (EHD) actuator in order to control airflows. In this paper, a parametric study has been performed in order to increase the velocity of the ionic wind induced by such actuators. The results show that an optimization of geometrical and electrical parameters allows us to obtain a time-averaged ionic wind velocity up to 8 m/s at 0.5 mm from the wall. Moreover, non-stationary measurements of the induced wind have been performed with synchronized records of current and voltage signals. These experiments show that the DBD actuator seems to generate a pulsed velocity at the same frequency than the applied high voltage.  相似文献   

13.
The present study is a quantitative evaluation of filtered Rayleigh scattering (FRS) axial velocity measurements in a M=2.2 axisymmetric jet. The FRS setup used a frequency-doubled, injection-seeded Nd:YAG laser, an iodine vapor cell and two intensified CCD cameras. The goal was to evaluate the FRS accuracy in a practical flow case and assess the relative uncertainty contributions of different sources. Despite the use of dried air and co-flow, water condensation produced uneven seeding of the flow, making particle scattering dominate over molecular scattering. The time-averaged velocity measurements showed fair agreement between the FRS and pressure probe data acquired in the same setup with deviations of up to 50 m/s. The analysis of uncertainty sources showed that laser drift dominated with an estimated contribution of 35 m/s. Several other sources, shot noise, iodine cell calibration, image misalignment and non-monochromatic scattered light were found to contribute O(10 m/s) each, bringing the total uncertainty estimate to ±50 m/s, in agreement with the experimental data.  相似文献   

14.
This paper reports about the first application of a laser Doppler velocity profile sensor for precise flow rate measurements of natural gas under high pressure. The profile sensor overcomes the limitations of conventional laser Doppler anemometry (LDA) namely the effect of spatial averaging and the effect of fringe spacing variation (virtual turbulence). It uses two superposed, fan-like interference fringe systems to determine the axial position of a tracer particle inside the LDA’s measurement volume. Consequently, a spatial resolution of about 1 μm can be achieved and the effect of virtual turbulence is nearly eliminated. These features predestine the profile sensor for flow rate measurements with high precision. Velocity profile measurements were performed at the German national standard for natural gas, one of the world′s leading test facilities for precision flow rate measurements. As a result, the velocity profile of the nozzle flow could be resolved more precisely than with a conventional LDA. Moreover, the measured turbulence intensity of the core flow was of 0.14% mean value and 0.07% minimum value, which is significantly lower than reference measurements with a conventional LDA. The paper describes the performed measurements, gives a discussion and shows possibilities for improvements. As the main result, the goal of 0.1% flow rate uncertainty seems possible by an application of the profile sensor.  相似文献   

15.
A new high-resolution laser Doppler anemometer (LDA) has been developed with a working distance of 350 mm, allowing operation in lab-scale wind tunnels. The measurement volume size is 35 μm in diameter by 60 μm in length, allowing resolution of the smallest turbulence scales even at fairly high Reynolds numbers. The controversial question of velocity and validation bias in LDA data is resolved with an experimental method for measuring and removing those effects. Uncertainty estimates are also derived for all the mean and Reynolds stress measurements. Received: 27 June 1999/Accepted: 30 August 2000  相似文献   

16.
Imaging laser Doppler velocimetry (ILDV) is a novel flow measurement technique, which enables the measurement of the velocity in an imaging plane. It is an evolution of heterodyne Doppler global velocimetry (HDGV) and may be regarded as the planar extension of the classical dual-beam laser Doppler velocimetry (LDV) by crossing light sheets in the flow instead of focused laser beams. Seeding particles within the flow are illuminated from two different directions, and the light scattered from the moving particles exhibits a frequency shift due to the Doppler effect. The frequency shift depends on the direction of the illumination and the velocity of the particle. The superposition of the two different frequency-shifted signals on the detector creates interference and leads to an amplitude modulated signal wherein the modulation frequency depends on the velocity of the particle. This signal is detected using either a high-speed camera or alternatively a smart pixel imaging array. This detector array performs a quadrature detection on each pixel with a maximum demodulation frequency of 250 kHz. To demonstrate the feasibility of the technique, two experiments are presented: The first experiment compares the measured velocity distribution of a free jet using ILDV performed with the smart pixel detector array and a high-speed camera with a reference measurement using PIV. The second experiment shows an advanced setup using two smart pixel detector arrays to measure the velocity distribution on a rotating disk, demonstrating the potential of the technique for high-velocity flow measurements.  相似文献   

17.
Variations of the velocity and pressure of repetitive 4 GPa laser-driven shock fronts in a polymer thin film are studied using spatially resolved ultrafast coherent anti-Stokes Raman Spectroscopy (CARS) measurements of shock compression of an anthracene optical gauge. Even though the radial profile of the laser pulse that generates the shock is a Gaussian that falls off steeply at the edges, optical saturation effects in the shock generation layer flatten out the shock front. Detailed measurements show the shock pressure, as indicated by the blueshift of an anthracene vibrational transition, and the shock velocity, as indicated by the arrival time at the anthracene gauge layer, remain constant within better than 5% over the central region probed by CARS, over a run distance of at least m. Received 30 July 2001 / Accepted 13 March 2002 Published online 17 June 2002  相似文献   

18.
With the rapid development of numerical codes for fluid-structure interaction computations, the demand for validation test cases increases. In this paper we present a comparison between numerical and experimental results for such a fluid-structure interaction reference test case. The investigated structural model consists of an aluminum front cylinder with an attached thin metal plate and a rear mass at the trailing edge. All the structure is free to rotate around the axle mounted in the center of the front cylinder. The model's geometry and mechanical properties are chosen in such a way as to attain a self-exciting periodical swiveling movement when exposed to a uniform laminar flow. Reproducibility of the coupled fluid-structure motion is the key criterion for the selection of the model in order to permit an accurate reconstruction of the results in the time-phase space. The Reynolds number of the tests varies up to 270 and within that range the structure undergoes large deformations and shows a strong nonlinear behavior. It also presents two different self-excitation mechanisms depending on the flow velocity. Hence, challenging tasks arise for both the numerical solution algorithm and the experimental measurements. To account for the two different excitation mechanisms observed on increasing the speed of the flow, results for two different velocities are considered: the first at 1.07 m/s (Re=140) and the second at 1.45 m/s (Re=195). The comparisons presented in this paper are carried out on the basis of the time trace of the front body angle, trailing edge coordinates, structure deformation and the time-phase resolved flow velocity field. They reveal very good agreement in some of the fluid-structure interaction modes whereas in others deficiencies are observed that need to be analyzed in more detail.  相似文献   

19.
In dynamic materials research, high precision impact displacement, velocity and force measurements are often required. In lower velocity testing apparatus, impact force histories are most often obtained through strain gage, piezoelectric force transducer or accelerometer signals. Velocity and displacement histories are then obtained by integration. Non-contact measurement systems have a number of advantages over these more common mechanical contact methods, and can generally be used at higher impact speeds. In this paper a relatively simple optical technique is presented for recording the impactor displacement history, from which the impact velocity and force histories can be readily obtained for a (quasi-) rigid impactor. The technique is based on the relative displacement of two moiré line gratings: one grating attached to the impacting body and the other serving as stationary reference grating. The technique has proven to be useful for impact speeds of a few m/s to well over 200 m/s. Results of transverse impact experiments on composite laminates are presented.  相似文献   

20.
Turbulent wall pressure fluctuation measurements were made in water on a towed model of length 129.8 (m) and diameter 3.8 (cm) for steady speeds from 6.2 (m/s) to 15.5 (m/s). The drag on the model was measured with a strut mounted load cell which provided estimates of the momentum thickness and friction velocity. Momentum thickness Reynolds numbers Re θ varied from 4.8 × 105 to 1.1 × 106. The ratio of momentum thickness to viscous length scale is significantly greater than for flat plate cases at comparable Re θ. The effectiveness of inner and outer velocity and length scales for collapsing the pressure spectra are discussed. The wavenumber–frequency spectra show a convective ridge at higher frequencies similar to flat plate boundary layers. At low frequencies, energy broad in wavenumber extends outside the convective ridge and acoustic cone, with no characteristic wave speed. Wall pressure cross-spectral levels scaled with similarity variables are shown to increase with increasing tow speed, and to follow decay constants consistent with flat plate cases. The convection velocities also display features similar to flat plate cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号