首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The history of development of “electronic tongue” multisensor systems whose operation is underlain by principles close to those in biological sensory systems was briefly overviewed. The main types of “electronic tongue” systems developed by now were described, along with sensor materials and sensors applied in such systems. The most widespread applications of “electronic tongues” were discussed including those for recognition and classification of liquid media, quantitative analysis of various components in these liquids, smart monitoring of industrial processes, and evaluation of the type and intensity of the flavor of various foodstuffs and drugs.  相似文献   

2.
This review compares various types of (bio)electronic tongues. The design and principles of potentiometric and voltammetric electronic tongues are discussed together with applications in food and environmental analysis. Different approaches towards bioelectronic tongue are presented. Several methods for evaluation and interpretation of the measured data are described. Finally, the potential of such devices for analysis of wine is discussed.  相似文献   

3.
The review presents a short record of the evolution of chemical sensors (ion selective electrodes) and multisensor systems of an electronic tongue type, based on the organization principles similar to those of biological sensors. The main types of chemical sensors and multisensor electronic tongue combinations elaborated today are considered along with sensitive materials used in them. Recent advances in chemical sensors, for example, lower detection limits and so-called true selectivity are scrutinized. Also, some widespread analytical applications of electron tongues, including those for the identification and classification of liquid media, for the quantification of various components in there, for the control of industrial processes, as well as the type and intensity evaluation of the taste of food and medications are discussed.  相似文献   

4.
The electronic tongue based on a sensor array comprising 23 potentiometric cross-sensitive chemical sensors and pattern recognition and multivariate calibration data processing tools was applied to the analysis of Italian red wines. The measurements were made in 20 samples of Barbera d’Asti and in 36 samples of Gutturnio wine. The electronic tongue distinguished all wine samples of the same denomination and vintage, but from different vineyards. Simultaneously the following quantitative parameters of the wines were measured by the electronic tongue with precision within 12%: total and volatile acidity, pH, ethanol content, contents of tartaric acid, sulphur dioxide, total polyphenols, glycerol, etc. The electronic tongue is sensitive to multiple substances that determine taste and flavour of wine and, hence, the system was capable of predicting human sensory scores with average precision of 13% for Barbera d’Asti wines and 8% for Gutturnio wines.  相似文献   

5.
Ciosek P  Wróblewski W 《The Analyst》2007,132(10):963-978
Electronic tongue systems are multisensor devices dedicated to automatic analysis of complicated composition samples and to the recognition of their characteristic properties. Recently, the number of publications covering this topic has significantly increased. Many possible architectures of such devices were proposed: potentiometric, voltammetric, as well as approaches embracing mass- and optical-sensors. For the analysis of sensor array data, various pattern recognition systems were proposed. All of these topics are summarized in this review. Moreover, additional problems are considered: miniaturization of electronic tongues and hybrid systems for liquid sensing.  相似文献   

6.
It is important to define a standard method to store basic sensor information, such as the type and the structure of sensors for an electronic tongue system and there is no such method defined in the IEEE 1451.4 transducer electronic data sheet (TEDS) so far. The major challenge is to choose a suitable standard template that can be used with sensors for electronic tongues. However, the standard templates provide an imprecise specification when used with sensing devices for electronic tongues. In this paper, we present definitions of the basic TEDS of IEEE 1451.4 for sensors for an electronic tongue system and propose a new template TEDS for IEEE 1451.4 for potentiometric devices.  相似文献   

7.
电子传感技术以其信号易于获得、信息丰富、能够从整体上表征样品性质等优势, 近年来在中药材及农产品分析领域得到日益广泛的应用.对常用的电子传感技术电子眼、电子鼻、电子舌等进行介绍, 对上述技术在中药、烟叶、食品、饮料等领域的应用报道进行综述, 并对其相关的多变量数据分析技术、多源数据融合技术、品牌保护技术及未来仪器研发进行展望, 以期为电子传感技术在中药材及农产品领域的推广应用提供借鉴.  相似文献   

8.
This work investigates the use of electronic tongues for environmental monitoring. Electronic tongues were based on arrays of potentiometric sensors plus a complex data processing by artificial neural networks and data transmission by radiofrequency. A first application, intended for a system simulating real conditions in surface water, performed a simultaneous monitoring of ammonium, potassium, sodium, chloride, and nitrate ions. The proposed system allowed us to assess the effect of natural biodegradation stages for these species. A second application was used to monitor concentrations of ammonium, potassium, and sodium in the ‘Ignacio Ramírez’ dam (Mexico). The electronic tongue used here allowed us to determine the content of the three cations in real water samples, although a high matrix effect was encountered for sodium determination. The implemented radio transmission worked robustly during all the experiments, thus demonstrating the viability of the proposed systems for automated remote applications.  相似文献   

9.
Geosmin (GSM) and 2‐Methylisoborneol (MIB) are substances commonly found in river water and arise due to eutrophication process. Such contaminants affect the organoleptic properties of water, hampering its consumption, and use in beverage industries. As the human perception threshold for these compounds is low, the devices aimed at their detection must be sensitive enough to detect concentrations as low as a few nanogram per liter in order to guarantee the water quality parameters. Due to the experimental simplicity, fast analysis, portability, and capability for on‐site analysis, the use of electronic tongues and electronic noses employing hybrid and composite materials are potential for GSM and MIB determination. In this work, two distinct electronic tongues were applied in the electrical determination of GSM and MIB in pure and river water. The difference between them consisted in the type of polymer processing used in the fabrication of sensing units. The thin films deposited onto gold IDEs were based on polyamide 6, polypirrole, and polyaniline, but fabricated by drop‐casting and electrospinning. The differences in the electronic tongue performances were correlated to the distinct morphologies of the sensitive layers. Both devices were able to discriminate pure water from solutions tainted with GSM and MIB in concentration as low as 25 ng L?1, with high data correlation and a good reproducibility.  相似文献   

10.
This review presents recent advances concerning work with electronic tongues employing electroanalytical sensors. This new concept in the electroanalysis sensor field entails the use of chemical sensor arrays coupled with chemometric processing tools, as a mean to improve sensors performance. The revision is organized according to the electroanalytical technique used for transduction, namely: potentiometry, voltammetry/amperometry or electrochemical impedance. The significant use of biosensors, mainly enzyme‐based is also presented. Salient applications in real problem solving using electrochemical electronic tongues are commented.  相似文献   

11.
We are making a numerical comparison of various preprocessing strategies for dealing with data from voltammetric electronic tongues in order to reduce the high dimensionality of the response matrices. Different modelling tools are presented and briefly described. We then compare combinations of four preprocessing strategies (principal component analysis, fast Fourier transform, discrete wavelet transform, voltammogram-windowed slicing integral) with four modelling alternatives (principal component regression, partial least squares regression, multi-way partial least squares regression, artificial neural networks) by employing data from a voltammetric bioelectronic tongue, an array formed by enzyme-modified biosensors and applied to the discrimination and quantification of phenolic compounds.
Figure
We are making a numerical comparison of various preprocessing strategies for dealing with data from voltammetric electronic tongues in order to reduce the high dimensionality of the response matrices  相似文献   

12.
An integrated multisensor composed by six ISFET devices selective to common ions and heavy metals combined with a flow injection analysis (FIA) system has been applied as an electronic tongue to grape juice and wine sample analysis. The data obtained for several grape and wine variety samples analysis have been treated using multiparametric tools like principal component analysis (PCA) and soft independent modelling class analogy technique (SIMCA) for the patterning recognition and classification of samples and partial least squares (PLS) regression for quantification of several parameters of interest in wine production. The results obtained have demonstrated the potential of using those multisensors as electronic tongues not only for distinguishing the samples according to the grape variety and the vintage year but also for quantitative prediction of several sample parameters.  相似文献   

13.
We introduce a novel voltammetric method, so-called sinusoidal envelope voltammetry, for use in electronic tongues. Fourier transformation was used to transform the data of the signal from the time domain to the frequency domain. The four taste substances, acesulfame potassium, monosodium glutamate, potassium chloride and tartaric acid, are shown to exhibit abundant frequency characteristics in the power spectrum of a Fourier transformation. This indicates that the power spectrum from sinusoidal envelope voltammetry can be used as fingerprints of samples for classification. Principal component analysis along with discrimination index and multi-frequency large amplitude pulse voltammetry as a reference technique is used to evaluate the separation ability of sinusoidal envelope voltammetry. The score plots of the method for the four taste substances and for the five brands of Jiafan rice wine show better discrimination ability than multi-frequency large amplitude pulse voltammetry. Sinusoidal envelope voltammetry is considered to be a promising technique for use in voltammetric electronic tongues.
Figure
The sketch of the electronic tongue with sinusoidal envelope voltammetry (SEV) and multi‐frequency large amplitude pulse voltammetry (MLAPV)  相似文献   

14.
The intrinsic chemical components and sensory characteristics of Gardeniae fructus Praeparatus (GFP) directly reflect its quality and subsequently, affect its clinical curative effect. However, there is little research on the correlation between the appearance traits and chemical compositions of GFP during heat processing. In this study, the major components of five typical processed decoction pieces of GFP were determined. With the deepening of processing, the contents of geniposidic acid and 5-HMF gradually increased, while the contents of deacetyl-asperulosidic acid methyl ester, gardenoside, and two pigments declined. Moreover, the electronic eye, electronic tongue, and electronic nose were applied to quantify GFP’s sensory properties. It was found that the chroma values showed a downward trend during the processing of GFP. The results of odor showed that ammonia, alkenes, hydrogen, and aromatic compounds were the material base for aroma characteristics. Complex bitterness in GF was more obvious than that in other GFP processed products. Furthermore, one mathematical model was established to evaluate the correlation between the sensory characteristics and chemical composition of GFP during five different stages. A cluster analysis and neural network analysis contributed to recognizing the processing stage of GFP. This study provided an alternative method for the exterior and interior correlation-based quality evaluation of herbs.  相似文献   

15.
A review of new approaches and solutions in the development and application of enantioselective voltammetric sensors for the recognition of optical isomers of biologically active compounds and medicines is presented. The main methods of electrode modification by enantioselective selectors are discussed, i.e., the application of inclusion complexes, molecularly imprinted polymers, elements of living systems and their analogs, inorganic and organic materials with the effect of chirality, and also supramolecular structures. The main analytical characteristics of some sensors and sensor systems of the electronic tongue type for the recognition and determination of enantiomers in various samples are presented. Methods of processing of voltammetric data for the elimination of the effect the memory of measurements and the cleanup of analytical signals at low concentrations of enantiomers are considered.  相似文献   

16.
印刷有机电子技术是基于印刷原理的有机电子器件制造技术,是指将有机电子材料配制成功能性油墨,用印刷方式来制造电子器件与系统的方法,其发展涉及到材料化学、微电子学等多个学科方面的知识。其独特的制造方式和器件形态具有柔性、低成本、大面积制造等优势,并且与传统硅基电子器件在应用场合上形成了互补,在生物传感、电子皮肤、柔性显示等领域展示出优势。为了及时跟进这一快速发展的领域,对领域的发展有宏观的把握,本文从印刷技术和电路系统的角度进行了全面概述,介绍了喷墨打印、丝网印刷和转印印刷等印刷技术和基于印刷技术制备的有机数字电路(反相器、与非门、环形振荡器、D触发器),以及实现功能化的印刷电子应用(RFID、电子皮肤、OLED显示驱动背板等);最后,对本领域目前存在的问题和未来发展方向做了简要探讨。  相似文献   

17.
18.
Cheng S  Wu Z 《Lab on a chip》2012,12(16):2782-2791
Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.  相似文献   

19.
20.
《Electroanalysis》2006,18(17):1643-1648
A new multi‐flow‐through amperometric detectors design was employed as a sensors array system for the detection of flavor related phenols. Relevant parameters of the amperometric detection were examined and optimized. The multivariate analytical signal was processed with chemometric analysis for exploring and classifying the tea beverages. Multivariate regression was used to correlate the astringency value of several tea beverages, obtained by the UNI (Italian Organization for Standardization) sensory profile test, with the signals collected by this amperometric electronic tongue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号