首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Geometric structures of 135 polychlorinated acenaphthylene (PCAC) molecules were optimized using density functional theory (DFT) at the B3LYP/6-311G** level and some thermodynamic properties of them in the ideal gas state were calculated. The relations of these thermodynamic properties with the number and position of chlorine atoms were also explored, from which the relative stability of PCAC congeners was theoretically proposed according to the magnitude of the relative standard Gibbs free energy of formation (△r,fGθ). The results show that all PCAC isomers have planar geometric configuration. There exists intramolecular Cl···Cl weak interaction in some PCAC molecules. The change of △fHθ and fGθ of most stable PCAC isomers with increasing the number of chlorine atoms is different from that in the least stable PCAC congeners. The values of fHθ and fGθ for PCAC isomers with the same number of chlorine atoms show a strong dependence on the position of chlorine atoms and the relative stability of PCAC congeners has close relation with the intramolecular Cl···Cl nuclear repulsive interaction.  相似文献   

2.
DFT-B3LYP/6-311G** method has been used to optimize molecular geometric structures of 527 polychlorinated fluoranthene(PCFRT) congeners and calculate their thermo-dynamic properties in the ideal gas state,such as heat capacity at constant volume(Cv),entropy(S),standard enthalpy of formation(ΔfH) and standard Gibbs free energy of formation(ΔfG).The relations of Cv,S,ΔfH and ΔfG with the number and position of chlorine atoms have also been explored,from which the relative stability of PCFRT congeners was theoretically proposed according to the magnitude of the relative standard Gibbs free energy of formation(Δr,fG).It was found that some of the PCFRT isomers are in a nonplanar configuration and there are intramolecular Cl…Cl weak interactions in some of the isomers.With increasing the number of chlorine atoms,the values of ΔfH and ΔfG of the most stable PCFRT isomers decrease initially and then increase.The values of ΔfH and ΔfG of PCFRT congeners with the same number of chlorine atoms show a strong dependence on the positions of chlorine atoms.The relative thermodynamic stability of PCFRT isomers is determined mainly by intramolecular adjacent Cl…Cl nuclear repulsive interaction between Cl atoms at two different six-membered rings.Most PCFRT congeners are easier to form thermodynamically than their parent compound.  相似文献   

3.
Geometric structures of 135 polychlorinated fluorene (PCFR) molecules were optimized using density functional theory (DFT) at the B3LYP/6-311G** level and their thermodynamic properties in the ideal gas state were calculated. The relations of these thermodynamic properties with the number and position of chlorine atoms were also explored, from which the relative stability of PCFR congeners was theoretically proposed according to the magnitude of the relative standard Gibbs free energy of formation (Δr,fGθ). The results show that the geometric configuration of PCFR isomers is determined by the position of chlorine atoms. There exist two types of intramolecular weak interactions, i.e., C-H···Cl and Cl···Cl interactions in PCFR molecules. The change of ΔfHθ and ΔfGθ of most stable PCFR isomers with increasing the number of chlorine atoms is different from that in most unstable PCFR congeners. The values of ΔfHθ and ΔfGθ for PCFR isomers with the same number of chlorine atoms strongly depend on the position of chlorine atoms and the relative stability of PCFR congeners is mainly determined by intramolecular delocalized π bond and Cl···Cl nuclear repulsive interaction.  相似文献   

4.
Cyclodextrins(CD),cyclicoligomersofa-D-glucoseconnectedthroughglycosidical,4bonds,areseductivemoleculesappealingtoresearchersinpureacademicfieldsandappliedtechnologies'.ModelstudiesonCDinclusioncomplexationofferimportantinsightsintoenZyme-substrateillteractionsZandhenceattractgreatattention.Althoughmanyexperimentalapproachesareavailable,molecularmodelingprovidesanimportantalternativewayinstudyingtheCDchemistry'.Duetotheirlargesize,mosttheoreticalstudiesonCDchosemolecularmechanicsormolecula…  相似文献   

5.
多氯代菲分子结构和热力学性质的密度泛函理论研究   总被引:3,自引:0,他引:3  
王岩  曾小兰  方德彩 《化学学报》2009,67(10):1047-1056
采用密度泛函理论方法在B3LYP/6-311G(d, p)水平上对527个多氯代菲分子的几何结构进行了全优化并计算得到它们的热力学性质(等容热容( )、熵(S$)、标准生成焓(ΔfH$)和标准生成Gibbs自由能(ΔfG$)), 研究了这些性质与取代的氯原子数目和位置的关系, 根据各异构体的相对标准生成Gibbs自由能(Δr,fG$)的大小, 得到它们的热力学稳定性顺序. 计算结果表明: 绝大多数多氯代菲分子具有非平面的几何构型, 在多氯代菲分子中存在三种类型的分子内弱相互作用(H…H、C—H…Cl和Cl…Cl相互作用), 随着分子中取代的氯原子数目的增加, 多氯代菲最稳定异构体的ΔfH$和ΔfG$开始时逐渐减小, 然后又快速增加. 具有相同数目氯原子的多氯代菲异构体的ΔfH$和ΔfG$与氯原子的取代位置有很大的关系. 多氯代菲异构体的相对热力学稳定性主要由分子内的离域π键和Cl…Cl核排斥作用的强弱决定.  相似文献   

6.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational frequency along with intensities in IR and Raman spectra at RHF/6-31++G** and B3LYP/6-31++G** levels for phenobarbitone (C12H12N2O3) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions (PEDs) using MOLVIB program. A detailed interpretation of the infrared spectra of the title compound is reported. On the basis of the agreement between the calculated and observed results, the assignments of fundamental vibrational modes of phenobarbitone were examined and some assignments were proposed. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title compound have been constructed.  相似文献   

7.
Intriguing inactivation : Calculations suggest that the ability of relatively high‐energy radical intermediates to inactivate glycerol dehydratase (GDH) may reflect a general and hitherto unidentified inactivation mechanism in the reaction of coenzyme B12‐dependent enzymes and 3‐unsaturated 1,2‐diols (see scheme; AdoCbl: adenosylcobalamin or coenzyme B12).

  相似文献   


8.
The theoretical study of the dehydrogenation of 2,5‐dihydro‐[furan ( 1 ), thiophene ( 2 ), and selenophene ( 3 )] was carried out using ab initio molecular orbital (MO) and density functional theory (DFT) methods at the B3LYP/6‐311G**//B3LYP/6‐311G** and MP2/6‐311G**//B3LYP/6‐311G** levels of theory. Among the used methods in this study, the obtained results show that B3LYP/6‐311G** method is in good agreement with the available experimental values. Based on the optimized ground state geometries using B3LYP/6‐311G** method, the natural bond orbital (NBO) analysis of donor‐acceptor (bond‐antibond) interactions revealed that the stabilization energies associated with the electronic delocalization from non‐bonding lone‐pair orbitals [LP(e)X3] to δ*C(1)  H(2) antibonding orbital, decrease from compounds 1 to 3 . The LP(e)X3→δ*C(1)  H(2) resonance energies for compounds 1 – 3 are 23.37, 16.05 and 12.46 kJ/mol, respectively. Also, the LP(e)X3→δ*C(1)  H(2) delocalizations could fairly explain the decrease of occupancies of LP(e)X3 non‐bonding orbitals in ring of compounds 1 – 3 ( 3 > 2 > 1 ). The electronic delocalization from LP(e)X3 non‐bonding orbitals to δ*C(1)  H(2) antibonding orbital increases the ground state structure stability, Therefore, the decrease of LP(e)X3→δ*C(1)  H(2) delocalizations could fairly explain the kinetic of the dehydrogenation reactions of compounds 1 – 3 (k 1 >k 2 >k 3 ). Also, the donor‐acceptor interactions, as obtained from NBO analysis, revealed that the (C(4)C(7)→δ*C(1)  H(2) resonance energies decrease from compounds 1 to 3 . Further, the results showed that the energy gaps between (C(4)C(7) bonding and δ*C(1)  H(2) antibonding orbitals decrease from compounds 1 to 3 . The results suggest also that in compounds 1 – 3 , the hydrogen eliminations are controlled by LP(e)→δ* resonance energies. Analysis of bond order, natural bond orbital charges, bond indexes, synchronicity parameters, and IRC calculations indicate that these reactions are occurring through a concerted and synchronous six‐membered cyclic transition state type of mechanism.  相似文献   

9.
The Schiff base compound, 4‐[(2‐hydroxy‐3‐methylbenzylidene)amino]‐1,5‐dimethyl‐2‐phenyl‐1,2‐dihydro‐3H‐pyrazol‐3‐one, has been synthesized and characterized by IR, UV–vis, and X‐ray single‐crystal determination. Molecular geometry from X‐ray experiment of the title compound in the ground state have been compared using the density functional method (B3LYP) with 6‐31G(d,p) basis set. Calculated results show that density functional theory (DFT) can well reproduce the structure of the title compound. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d,p) basis set by applying the Onsager and the polarizable continuum model (PCM). The results obtained with these methods reveal that the PCM method provided more stable structure than Onsager's method. By using TD‐DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD‐DFT method and the experimental one is determined. The predicted nonlinear optical properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential and NBO analysis were performed at B3LYP/6‐31G(d,p) level of theory. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
The conformational analysis of cycloheptane (1), oxacycloheptane (2), 1,2‐dioxacycloheptane (3), 1,3‐dioxacycloheptane (4), and 1,4‐dioxacycloheptane (5) has been carried out using B3LYP, CCD, CCSD, and QCISD with the 6‐311+G(d,p) and cc‐pVDZ basis sets. The twist chair conformers are predicted to be lower in energy than their corresponding boat and chair conformations. All levels of theory predict (4) to be lower in energy than (3) and (5). CCSD predicts remarkably similar activation barriers for the conformational interconversion of the twist chair conformers to their corresponding boat conformers. Small barriers to pseudorotation are also predicted. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

11.
12.
The planarity of the second stable conformer of 1,3‐butadiene, the archetypal diene for the Diels–Alder reaction in which a planar conjugated diene and a dienophile combine to form a ring, is not established. The most recent high level calculations predicted the species to adopt a twisted, gauche structure owing to steric interactions between the inner terminal hydrogens rather than a planar, cis structure favored by the conjugation of the double bonds. The structure cis‐1,3‐butadiene is unambiguously confirmed experimentally to indeed be gauche with a substantial dihedral angle of 34°, in excellent agreement with theory. Observation of two tunneling components indicates that the molecule undergoes facile interconversion between two equivalent enantiomeric forms. Comparison of experimentally determined structures for gauche‐ and trans‐butadiene provides an opportunity to examine the effects of conjugation and steric interactions.  相似文献   

13.
Stable conformations of five‐member rings with the prototype cyclopentane are well‐known to exist as twist or envelope structures and are of general interest in chemistry. Here, we report on the conformational analysis of the sulfur‐containing ring 2‐methyltetrahydrothiophene studied by a combination of molecular beam Fourier transform microwave (MB‐FTMW) spectroscopy and quantum chemistry. Two twist conformers were observed, whereby highly accurate molecular parameters could be determined. In addition, the 34S‐isotopologue of the most stable conformer was assigned in natural abundances. Geometry optimizations were performed at different levels of theory and the calculated rotational constants were compared with experimental values. Two transition states optimized at the MP2/6‐311++G(d,p) level using the Berny algorithm could illustrate the intramolecular conversion between both conformers.  相似文献   

14.
1,3‐Di(tert‐butyl)‐2,4‐bis[2,4,6‐tri(tert‐butyl)phenyl]‐1,3‐diphosphacyclobutane‐2,4‐diyl was formed from [2,4,6‐tri(tert‐butyl)phenyl]phosphaacetylene and t‐BuLi. In addition, the X‐ray diffraction analysis was carried out, together with theoretical calculations of the structure and NMR data.  相似文献   

15.
High‐level ab initio and Born–Oppenheimer molecular dynamic calculations have been carried out on a series of hydroperoxyalkyl (α‐QOOH) radicals with the aim of investigating the stability and unimolecular decomposition mechanism into QO+OH of these species. Dissociation was shown to take place through rotation of the C?O(OH) bond rather than through elongation of the CO?OH bond. Through the C?O(OH) rotation, the unpaired electron of the radical overlaps with the electron density on the O?OH bond, and from this overlap the C=O π bond forms and the O?OH bond breaks spontaneously. The CH2OOH, CH(CH3)OOH, CH(OH)OOH, and α‐hydroperoxycycloheptadienyl radical were found to decompose spontaneously, but the CH(CHO)OOH has a decomposition energy barrier of 5.95 kcal mol?1 owing to its steric and electronic features. The systems studied in this work provide the first insights into how structural and electronic effects govern the stabilizing influence on elusive α‐QOOH radicals.  相似文献   

16.
The inclusion compound formed between cross‐linked α‐cyclodextrin dimer and substituted oligothiophene, was investigated using density functional theory (DFT). Energy gap, spectroscopy (IR, UV–vis, 13C NMR, and 1H NMR) and first hyperpolarizability data were analyzed for the free species and inclusion compound, pp‐PT@(αCD–αCD). The semiconducting property of the included pp‐PT was not substantially affected on inclusion, with the energy gap increasing by only 10% after interaction with αCD–αCD. On the other hand, the nonlinear optical (NLO) response was significantly decreased, with the first hyperpolarizability, β, predicted to be just more than 60% lower for the [2]rotaxane than for free pp‐PT, but still having considerable magnitude. This was explained by the two‐state model based on the charge‐transfer contribution to the electronic transitions. The sensitivity of electronic spectra might also be useful for the inclusion complex characterization. The IR spectrum was slightly sensitive to the host–guest interaction and the calculated 13C NMR and 1H NMR chemical shifts for the pp‐PT guest showed appreciable variations of 5–10 and 1–1.5 ppm, respectively, and so can be used for the characterization of inclusion compounds. We concluded that the formation of inclusion complexes with CDs, seems indeed very promising and the use of encapsulating conducting material should be experimentally pursued. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
藏药五脉绿绒蒿碱结构和性质的理论研究   总被引:10,自引:0,他引:10  
五脉绿绒蒿碱是一种从藏药五脉绿绒蒿中提取并已确认结构的新的生物碱. 采用密度泛函理论(DFT)和从头算(ab initio)方法, 在HF/6-31G*和B3LYP/6-31G*水平下全优化计算了该化合物的分子几何构型和电子结构; 依据Onsager自恰反应场(SCRF)模型考察了五脉绿绒蒿碱在氯仿、丙酮、二甲亚砜及水等溶剂中的溶剂化作用; 基于气相优化结构进行了B3LYP/6-31G*振动分析与红外光谱计算, 进一步按照统计力学原理求得了298~1500 K温度范围内该化合物的热力学性质. 此外, 还讨论了五脉绿绒蒿碱的分子结构与药效的关系.  相似文献   

18.
The synthesis of two [4]‐dendralene compounds incorporating thiophene‐(p‐nitrophenyl) donor–acceptor units is presented. The dendralenes adopt two different conformers in solution and solid state and the transformation between the structures can be controlled by light and heat. The electron‐donating components of the dendralenes are represented by bromothienyl (in 13 ) and ethylenedioxythiophene(EDOT)‐thienyl (in 15 ) end‐groups. The most facile transformation involves the isomerisation of donor–acceptor conjugated systems ( a conformers) into structures in which only the thiophenes are conjugated ( b conformers), and this process is driven by ambient light. The structures of the two conformers of compound 13 are confirmed by single‐crystal X‐ray diffraction studies and the structural changes in both compounds have been monitored by 1H NMR spectroscopy and absorption studies. The transformations were found to be first‐order processes with rate constants of k=0.0027 s?1 and k=0.00022 s?1 for 13 and 15 , respectively. Density functional theory calculations at the B3LYP/6‐31G* level give credence to the proposed mechanism for the a → b conversion, which involves photoinduced intramolecular charge transfer (ICT) as the key step. The EDOT derivative ( 15 ) can be polymerised by electrochemical oxidation and a combination of cyclic voltammetry and UV/Vis spectroelectrochemical experiments indicate that the a conformer can be trapped and stabilised in the solid state.  相似文献   

19.
Complete optimization was conducted for 136 polybromo-phenoxathiin congeners(PBPTs) on the B3LYP/6-31G* level with Gaussian 03 program.The structural parameters and thermodynamical parameters of each molecule were obtained under the standard state of 298.15 K and 1.013×105 Pa.Reverse linear regression was employed to establish the quantitative structure-property correlation models between heat capacity at constant volume(CVθ),entropy(Sθ),standard heat of formation(△fHθ) and standard free energy of formation(△fGθ) of PBPTs and the structural parameters(the most negative atomic charge(q-) and molecular average polarizability(α)).These models presented better correlations(r20.97).And they were validated by variance inflation factor(VIF) and t-test,which can better explain the regularity of thermodynamical property of PBPTs,and has good stability and great prediction ability.  相似文献   

20.
Results of ab initio self‐consistent‐field and density functional theory calculations of the gas‐phase structure, acidity (free energy of deprotonation, ΔG0), and aromaticity of tetrathiosquaric acid (3,4‐dithiohydroxy‐3‐cyclobutene‐1,2‐dithione, H2C4S4) are reported. The global minimum found on the potential energy surface of tetrathiosquaric acid presents a planar conformation. The ZZ isomer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very close in energy. The optimized geometric parameters exhibit a bond length equalization relative to reference compounds, cyclobutanedithione, and cyclobutenedithiol. The computed aromatic stabilization energy by homodesmotic reaction is −18.4 (MP2(fu)/6‐311+G**//RHF/6‐311+G**) and −15.1 kcal/mol (B3LYP//6‐311+G**// B3LYP/6‐311+G**). The aromaticity of tetrathiosquaric acid is indicated by the calculated diamagnetic susceptibility exaltation (Λ) −11.77 (CSGT(IGAIM)‐RHF/6‐311+G**// RHF/6‐311+G**) and −18.08 (CSGT(IGAIM)‐B3LYP/6‐311+G**// B3LYP/6‐311+G**). Thus, tetrathiosquaric acid fulfils the geometric, energetic and magnetic criteria of aromaticity. The most reliable theoretical gas‐phase acidities are $\Delta G^{0}_{1(298\mathrm{K})}=303.7$ and $\Delta G^{0}_{2(298\mathrm{K})}=394.1$ kcal/mol. Hence, tetrathiosquaric acid is a stronger acid than squaric acid (3,4‐dihydroxy‐3‐ cyclobutene‐1,2‐dione, H2C4O4). Comparisons of the computed results of tetrathiosquaric acid with squaric acid have also been made. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 443–449, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号