首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new theory of the ground state energy of a two-dimensional electron fluid is presented. It is shown that the ring diagram contribution changes its analytical behavior atr s =21/2, wherer s is the usual density parameter defined by rS = 1/a 0(π n)1/2,a 0 being the Bohr radius andn is the electron density. For smallr s , a high density series is obtained in agreement with the previous calculation. For larger s , a hitherto unknown low density series is obtained. In the low density region, the first order exchange energy is completely cancelled out by a term from the ring contribution so that the ground state energy decreases in proportion tor s ?2/3 , followed byr s /?4/3 and higher order terms. The energy is found to be minimum atr s=1.4757, the minimum value being ?0.481915 Rydbergs.  相似文献   

2.
The correlation energy and the Fermi momentum of an electron gas in 2-D are evaluated explicitly as functions of density. The ring diagram and first- and second-order exchange contributions are treated. In comparison with the 3-D case, the kinetic energy for the same rs is approximately one-half and the exchange and correlation energies are somewhat larger. The ground state energy plotted against rs shows a minimum at around rs = 1.65 with a minimum value of ?0.9858 Ryd. If the third-order ring contribution is added, the curve is shifted upward. The correlation energy is ?0.6258 to order e4. The third-order ringw contribution increases this value almost linearly with rs. The Fermi momentum decreases with rs due to the contribution. Different from the 3-D case, no ln rs term appears in the correlation energy within the approximation.  相似文献   

3.
A many body theory of an electron gas is developed to find the internal and correlation energies at low but finite temperatures. The contribution from the first order exchange, second order (regular and anomalous) exchange, and ring diagrams are treated. The Fermi momentum and the correlation energy are determined as functions of the density by two different methods, one being based on iteration and the other a direct solution of the number density relation. It was found that the iterative solutions which are correct to ordere 2 ore 4 become negative forr s of order 5 while the direct solutions do not, indicating the invalidity of the former. Hence, the correlation energy evaluated to the same orders by iteration will not be satisfactory in the same range. The highest order iterative solution which includes terms of ordere 6 does not show such a breakdown. These terms which give the contribution of orderr s to the correlation energy are therefore important and tend to reduce the magnitude of the correlation energy. The corresponding curve is indeed close to that determined by the direct method for smallr s but a significant deviation takes place at largerr s . The Coulomb interaction seems less effective at higher temperatures. The internal energy is also determined as a function of density and temperature.  相似文献   

4.
The ground state of a three-dimensional electron gas is theoretically investigated within the framework of the local spin density approximation with the Perdew–Zunger exchange-correlation energy. The system has been found to be in a one- or two-dimensional crystal state, when the Wigner sphere radius rs has an intermediate value. At rs=60, a triangular lattice with the lattice spacing 96.10 is the lowest energy state among fluids, 1D, 2D, and 3D crystals.  相似文献   

5.
A new theory of the ground state energy of a two-dimensional electron fluid is presented. It is shown that the ring diagram contribution changes its analytical behavior atr s =21/2, wherer s is the usual density parameter defined by rS = 1/a 0( n)1/2,a 0 being the Bohr radius andn is the electron density. For smallr s , a high density series is obtained in agreement with the previous calculation. For larger s , a hitherto unknown low density series is obtained. In the low density region, the first order exchange energy is completely cancelled out by a term from the ring contribution so that the ground state energy decreases in proportion tor s –2/3 , followed byr s /–4/3 and higher order terms. The energy is found to be minimum atr s=1.4757, the minimum value being –0.481915 Rydbergs.  相似文献   

6.
From variational upper bounds of the ground state energies of the fluid and solid phases, we estimate that charged bosons melt at rs ≈ 135, while charged fermions melt around rs ≈ 70.  相似文献   

7.
The exchange-correlation part (xc) to the free energy is numerical evaluated in the RPA at arbitrary degree of degeneracy. The results are compared with numerical data of easy-to-use analytic fit-formulas or Padé approximants of the xc-term. All together results show very high accuracy at extremly high densities (rs ≈ 1). The agreements disappear between the several formulas for increasing Brueckner parameter rs. Numerical results for the xc-potentials (pressure and chemical potential) at finite temperatures for an electron-ion system are given. The xc-part of the ground state energy of our electron-ion model is compared with the ground state energy for metallic hydrogen and with Monte-Carlo calculations.  相似文献   

8.
谢涵坤  周世勋  孙鑫 《物理学报》1984,33(9):1269-1277
本文计算了高密度的二维电子体系的边缘能(将二维体系沿某一直线解离成两片时,形成单位长度新边缘所需要的能量)。结果发现,当rss(c)(约0.415)时,边缘能变负,从而表明在高密度下,二维电子气的基态有可能发生不稳。我们分别讨论了二维非束缚的电子气和束缚的电子气基态的稳定性,并在一个简化的模型下给出了束缚的电子气基态稳定性的判据。 关键词:  相似文献   

9.
We analyze the ground state of the two-dimensional quantum system of electrons confined in a parabolic potential with the system size around 100 at 0 K. We map the system onto a classical system on the basis of the classical-map hypernetted-chain (CHNC) method which has been proven to work in the integral-equation-based analyses of uniform systems and apply classical Monte Carlo and molecular dynamics simulations. We find that, when we decrease the strength of confinement keeping the number of confined electrons fixed, the energy of the spin-polarized state with somewhat lower average density becomes smaller than that of the spin-unpolarized state with somewhat higher average density. This system thus undergoes the transition from the spin-unpolarized state to the spin polarized state and the corresponding critical value of rs estimated from the average density is as low as rs∼0.4 which is much smaller than the rs value for the Wigner lattice formation. When we compare the energies of spin-unpolarized and spin-polarized states for given average density, our data give the critical rs value for the transition between unpolarized and polarized states around 10 which is close to but still smaller than the known possibility of polarization at rs∼27. The advantage of our method is a direct applicability to geometrically complex systems which are difficult to analyze by integral equations and this is an example.  相似文献   

10.
The lowest excitations of a repulsively interacting few particle system are investigated within correlated “pocket state” basis functions. For long range interaction and non-isotropic confining potentials the method becomes exact, in the limit of large mean inter-particle distancesr s. The multiplet structure of the many-electron energy levels is explained and the ratios δ between the lowest excitation energies, which are related to the electron spin, are determined quantitatively using group theoretical means. The δ are independent of the detailed form of the inter-particle repulsion and of sufficiently larger s. The obtained δ-values are confirmed by available numerical data. The method is applied to 1D and 2D quantum dots.  相似文献   

11.
The energy spectrum of a nonrelativistic quantum particle and hydrogen-like atom is considered under the most general conditions of confinement in a spatial box (vacuum cavity). It is shown that the rearrangement of the lowest energy levels occurring in this case turns out to be considerably more significant when compared with the case of confinement achieved by the impenetrable potential barrier. The role in the rearrangement of this level, played by the von Neumann-Wigner level repulsion effect, is emphasized. For an atom confined in a spherical cavity of radius R, it is also shown that, when the role of the cavity boundary is played by the surface layer of nonzero depth d, the atomic ground state possesses a deep and pronounced minimum for the physically reasonable width and depth of that surface layer, in which the binding energy turns out to be an order of magnitude larger than that of the lowest 1s-level of a free atom E 1s . Also, it becomes possible to achieve a mode when the binding energy of an atom is noticeably higher than E 1s at R on the order of 10–100 nm.  相似文献   

12.
The ground-state energy of the ferromagnetic electron gas is calculated for the relative polarizationζ=0−1 and the interelectron separationr s =5−12. The method consists in describing the electron gas approximately by a quadratic boson Hamiltonian, and contains the random-phase approximation as a special case. Numerical studies show that in both the random-phase and the present approximations the paramagnetic state has the lowest energy: the energy increases withζ for all values ofr s considered. In the present approximation instabilities are found to occur forr s above a critical value, due to exchange processes of finite momentum transfers. Forζ=0 this critical value ofr s is 9.4; it decreases with increasingζ. However, the fully-polarized state (ζ=1), which lies above the rest, is always stable. The conclusions are as follows: (1) Forr s <9.4 the electron gas is paramagnetic. (2) Atr s =9.4 it goes over to the fully-polarized ferromagnetic state. (3) This phase transition requires an energy absorption of 0.03 rydberg per electron. (4) The fully-polarized state is not obtainable as the limitζ→1.  相似文献   

13.
The stimulated emission spectrum of uniaxially strained p-Ge is presented. The energy spectrum of the states of a shallow acceptor in Ge under uniaxial compression is calculated. The threshold pressure at which the acceptor state split off from the ground state becomes resonant is found. The pressure dependence of the width of this resonant level is calculated. The stimulated emission lines are identified. In particular, it is shown that the principal emission peak corresponds to the transition of holes from the resonant 1s (1s r) state to the local p ±1 state. The probabilities of optical transitions are calculated. A mechanism of population inversion due to the intense resonant scattering of hot holes with an energy corresponding to the position of the 1s r level is proposed. Zh. éksp. Teor. Fiz. 115, 89–100 (January 1999)  相似文献   

14.
The isomer shift of the 21.7 keVγ transition in Eu151 has been studied for various divalent and trivalent europium compounds using the Mössbauer technique. Theγ energy is lower by up to 1.1·10?6 eV in divalent compounds than in trivalent compounds. Using data from atomic spectroscopy it is estimated that the electron density at the nucleus is larger by about 1.9·1026cm?3 for the configuration 4f 6 than for 4f 7 due to different shielding of thes 2 shells. The difference of the mean square radii of the 21.7 keV state and the ground state is thenδ〈r2〉=+0.03 fm2. The measured isomer shift between trivalent and metallic europium and the relatives-electron densities in the rare earth metals measured by the positron annihilation rates are used to establish a calibration scheme for isomer shifts in rare earth metals. This calibration scheme is used to deduce a changeδr 2〉=+0.0055 fm2 between the 26 keV state and the ground state of Dy161.  相似文献   

15.
The equation of state of baryon-rich quark matter is studied within the SU(3) Nambu-Jona-Lasinio model with flavor-mixing interaction. Possible bound states (strangelets) and chiral phase transitions in this matter are investigated at various values of the strangeness fraction r s. Model predictions are very sensitive to the ratio of the vector and scalar coupling constants, ξ=G V/G S. At ξ=0.5 and zero temperature, the binding energy takes a maximum value of about 15 MeV per baryon at r s?0.4. Such strangelets are negatively charged and have typical lifetimes of about 10?7s. Calculations are performed at finite temperatures as well. According to these calculations, bound states exist up to temperatures of about 15 MeV. The model predicts a first-order chiral phase transition at finite baryon densities. The parameters of this phase transition are calculated as functions of r s.  相似文献   

16.
The two lowest energy spectral lines of the shallow donors in InSb involving ground to excited state transitions are studied in photoconductivity using higher spectral resolution and stronger magnetic fields than achieved previously. The observed line positions are compared with recent calculations of the high field hydrogenic donor levels and difference of the order of the effective Rydberg R1 at zero field are found at magnetic fields where the zero point cyclotron energy exceeds R1 by two orders of magnitude. Central-cell components of the 1s–2p transition, corresponding to four donor species are resolved, and the magnetic field dependence of the relative chemical shifts are analysed. The broader 1s–2p0 line undergoes a coupling at an interaction energy of 37 cm-1, the origin of which is uncertain at present.  相似文献   

17.
The crystal energy of the metallic hydrogen is found within the framework of the Wigner-Seitz method, in the form of the power series in the density parameter rs. The series appears to be absolutely convergent within the radius r0 = 4.2aB. The correspondence between this series and the perturbation theory expansion is established for terms of 2nd, 3rd, and 4th order. The value of the “tail” is estimated from the sum of all higher order terms of the first series.  相似文献   

18.
In 1969, Andreev and Lifshitz have conjectured the existence of a supersolid phase taking place at zero temperature between the quantum liquid and the solid. In this and a succeeding paper, we re-visit this issue for a few polarized electrons (spinless fermions) interacting via a U/r Coulomb repulsion on a two dimensional L×L square lattice with periodic boundary conditions and nearest neighbor hopping t. This paper is restricted to the magic number of particles N = 4 for which a square Wigner molecule is formed when U increases and to the size L = 6 suitable for exact numerical diagonalizations. When the Coulomb energy to kinetic energy ratio r s = UL/(2t ) reaches a value r s F ≈ 10, there is a level crossing between ground states of different momenta. Above r s F, the mesoscopic crystallization proceeds through an intermediate regime ( r s F < r s < r s W ≈ 28) where unpaired fermions with a reduced Fermi energy co-exist with a strongly paired, nearly solid assembly. We suggest that this is the mesoscopic trace of the supersolid proposed by Andreev and Lifshitz. When a random substrate is included, the level crossing at r s F is avoided and gives rise to a lower threshold r s F(W) < r s F where two usual approximations break down: the Wigner surmise for the distribution of the first energy excitation and the Hartree-Fock approximation for the ground state. Received 21 June 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: jpichard@cea.fr  相似文献   

19.
A procedure for obtaining molecular structural parameters from microwave spectral data is described. The method uses the same set of experimental ground state moments of inertia used for a substitution structure determination, but is based upon a least-squares fit of moments which are obtained by scaling the experimental I0 values. The scaling is performed in such a way that the resulting moments of inertia, Imγ are comparable to Watson's Im moments and are thus close to the equilibrium moments. Initial tests and evaluation suggest that the method may lead to structural parameters which are better approximations to the re structure than those obtained by the conventional r0 or rs methods.  相似文献   

20.
The residual ring diagram contribution which is due to the use of approximate eigenvalues and a momentum cutoff is evaluated and the terms of orderr s in the correlation energy are given explicitly. The result is exact to orderr s within neglect of the third order exchange contribution and improves the results of Du Bois, and Carr and Maradudin. The correlation energy plotted againstr s connects rather smoothly to the low density results obtained recently by Stevens and Pokrant based on an entirely different variational method.This work was supported by the National Science Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号