首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag nanowires within the channels of mesoporous silica have been successfully synthesized via a double solvent technique, in which n-hexane is used as a hydrophobic solvent to disperse mesoporous silica and an AgNO(3) aqueous solution is used as a hydrophilic solvent to fill mesochannels. The morphology of the obtained Ag (nanowires, nanoparticles or nanorods) can be controlled by adjusting the concentration of AgNO(3) solution and the template pore size. HRTEM images demonstrate extensive Ag nanowires with several to tens of hundreds nanometers in length are deposited along the long axis of mesochannels when the atomic AgNO(3)/Si ratio is 0.090. When the atomic AgNO(3)/Si ratio is 0.068 or 0.11, there is a combination of Ag nanoparticles and nanowires; nanoparticles are mainly formed when the atomic AgNO(3)/Si ratio is higher than 0.14. Further, the catalytic results of the oxidation of styrene show that styrene oxide and benzaldehyde are the main products of the reaction, and the morphology and diversity of Ag in Ag/mesoporous silica composites have an effect on the conversion of styrene and selectivity of styrene oxide.  相似文献   

2.
The spontaneous formation of Ag nanoparticles in a dimethylacetamide (DMAC) solution of poly(ethylene glycol) (PEG) was studied. FTIR analysis showed the formation of carbonyl groups, revealing that PEG acted as not only a protective agent but also a reducing agent in the formation of Ag nanoparticles. Since no significant reactions were observed when poly(tetramethylene glycol) (PTMG) was used to replace PEG or acetonitrile was used to replace DMAC, it was suggested that PEG molecules might be coiled to form pseudo-crown ether cavities, in which Ag complexes were bound to the oxyethylene groups and reduced, and that the use of a solvent which might appropriately solvate the Ag salt was important for the formation of Ag nanoparticles. In addition, the mean diameters of the resultant Ag nanoparticles were 3.8-9.0 nm, increasing with increasing AgNO(3) concentration. A sufficiently high PEG concentration relative to AgNO(3) was necessary for the formation of smaller Ag nanoparticles. This work provided a simple route for the in situ synthesis of Ag nanoparticles.  相似文献   

3.
The synthesis and characterization of water-soluble dispersions of Ag nanoparticles by the reduction of AgNO(3) using tryptophan under alkaline synthesis conditions are reported. The Ag nanoparticle formation was very slow at low concentration and rapid at extremes. For surface modification and redox reactions, manipulating the interparticles interaction controlled the size of Ag nanoparticles aggregates. Our results suggest that the replacement of the BH(4)(-) ions adsorbed on the nanoparticle surface by tryptophan destabilizes the particles and further caused aggregation. A mechanism is proposed for the formation of silver nanoparticles by tryptophan. The experimental results are supported by theoretical calculations. The Ag nanoparticles were characterized by UV-vis absorption, dynamic light scattering and transmission electron microscopy techniques.  相似文献   

4.
The reducing property of an organically soluble conducting polymer (poly(o-methoxyaniline), POMA) is used to prepare monodisperse, size-controlled, highly populated, and highly stable silver nanoparticles in an organic medium through an interfacial redox process with an aqueous AgNO3 solution. The transition of emeraldine base (EB) to the pernigraniline base (PB) form of POMA occurs during nanoparticle formation, and the nitrogen atoms of POMA(PB) stabilize Ag nanoparticles by coordination to the adsorbed Ag(+) on the nanoparticle surface. The conductivity of the nanocomposite is on the order of 10(-11) S/cm, indicating that no doping of POMA occurs under the preparation conditions. The nanoparticles are free of excess oxidant and external stabilizer particles. The POMA (EB) concentration tailors the size of nanoparticles, and at its higher concentration (0.01% POMA with 0.01 N AgNO3), very dense Ag nanoparticles (6 x 10(15) particles/m(2)) of almost uniform size and shape are produced. The rate constant and Avrami exponent values of the nanoparticle formation are measured from the time-dependent UV-vis spectra using the Avrami equation. The Avrami exponent (n) values are close to 1, indicating 2D athermal nucleation with the circular shape of the nuclei having diffusion-controlled growth. The rate constant values are almost independent of AgNO3 concentration but are strongly dependent on POMA concentration. The higher rate constant with increasing POMA(EB) concentration has been attributed for the lowering of nanoparticle size due to increased nucleation density.  相似文献   

5.
Silver nanocraters and monodisperse nanoparticles were formed on silicon wafers by spin-coating of an aqueous AgNO3/PVA solution and calcination of the resulting Ag+/PVA composite film. The monodisperse Ag nanoparicles were formed from small Ag+/PVA aggregates and were uniformly and stably distributed on the substrate surface. They were located as close as 2.8 nm apart (edge to edge) without coalescence. This nanoparticle stability was apparently derived from their interaction with the oxidized wafer surface. On the other hand, Ag metallic nanocraters with and without nanodots at their centers were produced from large Ag+/PVA aggregates. The explosive decomposition of AgNO3 and PVA by calcination could explain their formation. When Ag+ ions were reduced to Ag nanoparticles prior to calcination, larger Ag nanoparticles were produced probably due to aggregation of closely situated nanoparticles. Those nanoparticles that were located far enough stayed intact. Perspectives are discussed in terms of potential applications.  相似文献   

6.
An aqueous suspension of graphite oxide (GrO) was prepared from natural Yakut graphite by modified Hummers′ method. The lateral size of GrO flakes varied from 0.1 μm to 10 μm, their thickness was 20 nm. The fabricated suspension, GrO films (of various thickness and on various substrates), and GrO papers were studied in terms of their structural, optical, and electrophysical characteristics. The obtained GrO films are dielectrics with quite large resistance varying from 12.5.106–4.6.109 Ω depending on their thickness. The films are characterized by the luminescence in the region of 380–650 nm, the presence of oxygen-containing groups–ОН,–СООН,–С=О,–СОН, СОО–, and the transparency of 91% for a 20 nm thick film at the wavelength of 670 nm. The conducted study testifies high quality of Yakut graphite, which can be quite easily exfoliated. GrO films possess high resistance and transparency.  相似文献   

7.
Silver nanoparticles were synthesized in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles in isooctane with tetraethylene glycol dodecyl ether (C(12)E(4)) as a cosurfactant. Recovery of the Ag particles from the reverse micelles by dissolving antisolvent CO(2) in the micellar solution was investigated. All the Ag particles in the reverse micelles could be precipitated by compressed CO(2) at suitable pressures, while the surfactants remained in the isooctane continuous phase, and well-dispersed Ag nanoparticles were obtained. The effects of operating conditions on the size and size distribution of the Ag particles were investigated. The particle size decreased with decreasing molar ratio (w) of water to surfactant. A higher CO(2) pressure in the recovery process favored production of smaller particles. A decrease in the molar ratio of reductant KBH(4) to AgNO(3) resulted in larger Ag particles with higher polydispersity.  相似文献   

8.
The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.  相似文献   

9.
Pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles are synthesized in ethylene glycol (EG) in the presence of small amounts of AgNO3 and PVP without using Au seeds. The contents of Au and Ag in pentagonal nanobipyramids are determined by energy-dispersive X-ray spectroscopy (EDS). The EDS data demonstrates that this kind of nanoparticles is composed of Au/Ag alloys, not silver monolayers simply covering the surface of Au nanoparticles. Insights into the growth mechanism of pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles are discussed.  相似文献   

10.
通过电纺丝法结合原位还原及原位氧化反应, 成功制备了均匀负载Ag/AgCl复合纳米粒子/聚丙烯腈(PAN)复合纳米纤维膜. 首先利用电纺丝技术制备了PAN/AgNO3复合纳米纤维, 然后用乙二醇将硝酸银还原成银纳米粒子, 最后采用三氯化铁溶液对材料进行原位氧化. 所得纤维膜材料可以作为高效的可见光催化剂, 具有高可见光利用率, 优异的柔性和高光催化动力学等特性.  相似文献   

11.
X Yuan  Y Chen 《The Analyst》2012,137(19):4516-4523
A new strategy was explored for the visual determination of Cu(2+) using copper-catalysed in situ formation of Ag nanoparticles. In this method, only common reagents were used and the pre-synthesis and modification of nanoparticles are avoided. Ag(+) can form a milk-white suspension (AgBr) with Br(-) in an aqueous solution composed of AgNO(3), cetyltrimethylammonium bromide, ascorbic acid, bovine serum albumin, and NaNO(3). The reaction will be stopped by addition of Cu(2+), accompanied by a colour change from milk-white to orange or brilliant yellow. Cu(+) (the reduction product of Cu(2+)) consumes the dissolved O(2) and prevents the O(2) from oxidizing the newly reduced Ag atoms (by ascorbic acid) back to Ag(+), facilitating the further aggregation of Ag atoms to become Ag nanoparticles. The visible colour change was shown to be specific towards Cu(2+) over most other metal ions. The limit of detection was 0.75 μM Cu(2+) by the naked eye and 0.25 μM by spectrometer. Quantitation of Cu(2+) was achieved in a linear range from 0.25 to 2.0 μM. This method was validated by measuring real water and serum samples, giving results agreeing well with the data reported and measured by inductively coupled plasma mass spectrometry. The recovery was 95.6-106% for untreated tap water and 96.0-100% for resin-pre-treated water and serum samples.  相似文献   

12.
相转移方法制备银纳米粒子单层膜   总被引:8,自引:0,他引:8  
在油酸钠保护下用NaBH_4还原AgNO_3,制得了银纳料粒子胶体溶液。利用相转 移剂NaH_2PO_4等,使Ag纳料粒子在水/朋机相界面之间形成薄膜。形成的Ag纳料 粒子膜可以转移到玻璃等基质上,讨论了其转移机理;并用石英晶体微天平(QCM )宣检测了银纳料粒子的相转移量。  相似文献   

13.
The one-phase reduction of RuCl3 with lithium triethylborohydride as a reductant in tetrahydrofuran in the presence of 1-octanethiol, 1-octadecanethiol, 1,1'-binaphthalene-2,2'-dithiol, or oligoethyleneoxythiol gave organic solvent- and water-soluble thiol-stabilized ruthenium nanoparticles. The oligoethyleneoxythiol-stabilized ruthenium nanoparticles were soluble in both water and organic solvents. The ruthenium nanoparticles were stable in the solid state and did not aggregate in solution. Transmission electron microscope images of the ruthenium nanoparticles reveal small dispersed particles with a narrow size distribution. The ligand-exchange reaction of octadecanethiol-stabilized ruthenium nanoparticles (2.0 nm) with phenothiazine-linked decanethiol afforded redox-active phenothiazine-functionalized ruthenium nanoparticles (1.9 nm) that showed a reversible redox peak at +0.51 V (vs Ag/0.1 M AgNO3) in the cyclic voltammogram.  相似文献   

14.
The metal ion extractant (HDEHP) that is commonly employed in liquid membrane extraction has been shown to stabilise Ag and Cu nanoparticles in oil media of size 5 and 10 nm, respectively. The particle are formed by reduction of the metal salts of HDEHP that are oil soluble and shown by SANS to form small reversed micelles of radius approximately 1 nm. The extractant is also effective at stabilising particles of similar size in an oil phase when the metal ion (e.g., AgNO3) is reduced in a coexisting aqueous phase.  相似文献   

15.
In this letter we describe a novel but effective wet-chemical route for the simple preparation of snowflake-like dendritic nanostructures of Ag, which are homogeneous in size, carried out by directly mixing AgNO3 and p-phenylenediamine (PPD) aqueous solutions at room temperature. It reveals that such dendrites are aggregates of nanoparticles and highly crystalline in nature. It is found that the molar ratio of [PPD]/[Ag+] influences the final morphologies of the structures formed and that excessive PPD (the molar ratio of [PPD]/[Ag+] is higher than 1:1) is crucial to achieving dendrites. The possible dendritic growth mechanism is also predicted. This method can also be extended to the preparation of Au dendrites.  相似文献   

16.
A novel colloidal approach toward semiconductor/metal nanocomposites is presented. Organic-soluble anatase TiO(2) nanorods are used for the first time to stabilize Ag nanoparticles in optically clear nonpolar solutions in the absence of specific ligands for silver. Metallic silver is generated upon UV illumination of deaerated TiO(2) solutions containing AgNO(3). The Ag nanoparticles can be obtained in different size-morphological regimes as a function of the irradiation time, due to light-induced photofragmentation and ripening processes. A mechanism for the colloidal stabilization of the silver nanoparticles is tentatively suggested, which regards the TiO(2) nanorods as inorganic stabilizers, thus acting in the same manner as conventional surfactant molecules. The proposed photocatalytic approach offers a convenient method for producing TiO(2)/Ag nanocomposite systems with a certain control over the metal particle size without the use of surfactants and/or additives. Stable colloidal TiO(2)-nanorod-stabilized Ag nanoparticles can be potentially available for a number of applications that require "clean" metal surfaces, such as homogeneous organic catalysis, photocatalysis, and sensing devices.  相似文献   

17.
Silver nanoparticles were prepared by the reduction of AgNO(3) with aniline in dilute aqueous solutions containing cetyltrimethlyammonium bromide, CTAB. Nanoparticles growth was assessed by UV-vis spectroscopy and the average particle size and the size distribution were determined from transmission electron microscopy, TEM. As the reaction proceeds, a typical plasmon absorption band at 390-450nm appears for the silver nanoparticles and the intensities increase with the time. Effects of [aniline], [CTAB] and [Ag(+)] on the particle formation rate were analyzed. The apparent rate constants for the formation of silver nanoparticles first increased until it reached a maximum then decreased with [aniline]. TEM photographs indicate that the silver sol consist of well dispersed agglomerates of spherical shape nanoparticles with particle size range from 10 to 30nm. Aniline concentrations have no significant effect on the shape, size and the size distribution of Ag-nanoparticles. Aniline acts as a reducing as well as adsorbing agent in the preparation of roughly spherical, agglomerated and face-centered-cubic silver nanoparticles.  相似文献   

18.
蒋丽  刘伟  姚建林  陈彪  顾仁敖 《化学学报》2011,69(20):2368-2372
以三嵌段共聚物P123为模板剂, 正硅酸乙酯为硅源, 水热合成了介孔分子筛SBA-15, 通过对SBA-15内外表面修饰, 使用银氨溶液和硝酸银溶液作为金属源合成Ag/SBA-15, 透射电镜(TEM)研究表明在SBA-15孔道内较好地分散了颗粒状和棒状的Ag纳米粒子. 以苯硫酚作为探针分子, 研究了负载Ag纳米粒子的SBA-15的SERS效应, 结果表明Ag/SBA-15具有良好的SERS活性. 另外, 该材料对催化硼氢化钠还原对硝基苯酚具有良好的催化效果, 通过结合现场SERS技术, 研究了该催化过程的机理.  相似文献   

19.
Synthesis of mesoporous materials has become more and more important due to their wide application. Nowadays, there are two main ideas in their preparation. One is focused on the templating method. The other is based on metal-organic frameworks (MOFs) constructed from molecular building blocks. Herein, we exploit a new idea for their facile and general synthesis, namely, using "artificial atoms" (monodisperse nanoparticles) as uniform building blocks to construct ordered mesoporous materials. Mesoporous Ag, Ag2S, and Ag2Se have been obtained to demonstrate this concept. On the other hand, we also describe a facile method to prepare the "building blocks". Ag nanoparticles were obtained by direct thermal decomposition of AgNO3 in octadecylamine, and Ag2S/Ag2Se nanoparticles were synthesized by reaction between sulfur or selenium powder and Ag nanoparticles formed in situ. This approach for Ag, Ag2S, and Ag2Se nanoparticles is efficient, economical, and easy to scale up in industrial production.  相似文献   

20.
The biosynthesis of silver nanoparticles has been successfully conducted using Plectonema boryanum UTEX 485, a filamentous cyanobacterium, reacted with aqueous AgNO3 solutions (approximately 560 mg/L Ag) at 25-100 degrees C for up to 28 days. The interaction of cyanobacteria with aqueous AgNO3 promoted the precipitation of spherical silver nanoparticles and octahedral (111) silver platelets (of up to 200 nm) in solutions. The mechanisms of silver nanoparticles via cyanobacteria could involve metabolic processes from the utilization of nitrate at 25 degrees C and also organics released from the dead cyanobacteria at 25-100 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号