首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

2.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

3.
This paper reports on a study of the low-temperature conductivity and parameters of the superconducting state, namely, the critical temperature T c and the second critical magnetic field Hc2, in the (Pb0.3Sn0.7)0.95In0.05Te solid solution under hydrostatic pressure P ≤ 9 kbar at T = 4.2 K. The choice of this material has been motivated by the fact that, according to earlier observations, it undergoes a superconducting transition at T c ∼ 2.3 K, i.e., close to the maximum value T c ∼ 2.9 K found for the (Pb z Sn1 − z )0.95In0.05Te solid solutions with a lead content z ∼ 0.15–0.25. It has been demonstrated that an increase in the pressure to P ≤ 9 kbar leads to a bell-shaped dependence T c (P). The observed dependences are assigned to the effect of hydrostatic compression on the band structure of the solid solution and indicate a shift in the position of the Fermi level E F with increasing pressure within the impurity band of the In quasi-local states. In this case, E F passes through a maximum in the density of impurity states at P = 3–5 kbar.  相似文献   

4.
A new spintronics material with the Curie temperature above room temperature, the ZnSiAs2 chalcopyrite doped with 1 and 2 wt % Mn, is synthesized. The magnetization, electrical resistivity, magnetoresistance, and the Hall effect of these compositions are studied. The temperature dependence of the electrical resistivity follows a semiconducting pattern with an activation energy of 0.12–0.38 eV (in the temperature range 124 K ≤ T ≤ 263 K for both compositions). The hole mobility and concentration are 1.33, 2.13 cm2/V s and 2.2 × 1016, 8 × 1016 cm−3 at T = 293 K for the 1 and 2 wt % Mn compositions, respectively. The magnetoresistance of both compositions, including the region of the Curie point, does not exceed 0.4%. The temperature dependence of the magnetization M(T) of both compositions exhibits a complicated character; indeed, for T ≤ 15 K, it is characteristic of superparamagnets, while for T > 15 K, spontaneous magnetization appears which correspond to a decreased magnetic moment per formula unit as compared to that which would be observed upon complete ferromagnetic ordering of Mn2+ spins or antiferromagnetic ordering of spins of the Mn2+ and Mn3+ ions. Thus, for T > 15 K, it is a frustrated ferro- or ferrimagnet. It is found that, unlike the conventional superparamagnets, the cluster moment μ c in these compositions depends on the magnetic field: ∼12000–20000μB for H = 0.1 kOe, ∼52–55μB for H = 11 kOe, and ∼8.6–11.0μB at H = 50 kOe for the compositions with 1 and 2 wt % Mn, respectively. The specific features of the magnetic properties are explained by the competition between the carrier-mediated exchange and superexchange interactions.  相似文献   

5.
N. Hannachi  K. Guidara  F. Hlel 《Ionics》2011,17(5):463-471
The Ac electrical conductivity and the dielectric relaxation properties of the [(C3H7)4N]2Cd2Cl6 polycrystalline sample have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 209 Hz–5 MHz and 361–418 K, respectively. The purpose is to make a difference between the electrical and dielectric properties of the polycrystalline sample and single crystal. Besides, a detailed analysis of the impedance spectrum suggests that the electrical properties of the material are strongly temperature-dependent. Plots of (Z" versus Z') are well fitted to an equivalent circuit model consisting of a series combination of grains and grains boundary elements. Moreover, the temperature dependence of the electrical conductivity in the different phases follows the Arrhenius law and the frequency dependence of σ (ω) follows the Jonscher’s universal dynamic law. Furthermore, the modulus plots can be characterized by full width at half height or in terms of a nonexperiential decay function φ(t) = exp(t/t)β. Finally, the imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism.  相似文献   

6.
The magnetocaloric effect ΔT has been studied by a direct method in two samples of the manganite Sm0.55Sr0.45MnO3, namely, a single crystal (sample A) and a ceramic sample (sample C). The temperature dependences of the ΔT effect of both samples exhibit a maximum at T max = 143.3 K for the sample A and T max = 143 K for the sample C. In these maxima, the values of the ΔT effect are 0.8 and 0.4 K in the magnetic field H = 14.2 kOe for the samples A and C, respectively. In addition, the ΔT(T) curve of the sample A has a minimum at T min = 120 K, in which ΔT = −0.1 K. The maximum value of the ΔT effect increases with an increase in the magnetic field H in the range of magnetic fields up to 14.2 kOe, and the rate of this increase at H > 8 kOe is higher than that at H < 8 kOe. These features of the ΔT effect are explained by the presence of ferromagnetic and antiferromagnetic A- and CE-type clusters in the samples.  相似文献   

7.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

8.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

9.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound has been synthesized by a solution-based chemical method. The X-ray diffraction study at room temperature revealed an orthorhombic system with P21212 space group. The complex impedance has been investigated in the temperature and frequency ranges 420–520 K and 200 Hz–5 MHz, respectively. The grain interior and grain boundary contribution to the electrical response in the material have been identified. Dielectric data were analyzed using the complex electrical modulus M * for the sample at various temperature. The modulus plots can be characterized by full width at half height or in terms of a non-exponential decay function ϕ(t) = exp[(−t/τ) β ]. The detailed conductivity study indicated that the electrical conduction in the material is a thermally activated process. The variation of the AC conductivity with frequency at different temperatures obeys the Almond and West universal law.  相似文献   

10.
The magnetic moment M, the magnetic susceptibility χ, and the thermal conductivity of chalcopyrite CuFeS2, which is a zero-gap semiconductor with antiferromagnetic ordering, have been measured in the temperature range 10–310 K. It has been revealed that the quantities χ(T) and M(T) increase anomalously strongly at temperatures below ∼100 K. The temperature dependence M(T) is affected by the magnetic prehistory of the sample. An analysis has demonstrated that the magnetic anomalies are associated with the presence of a system of noninteracting magnetic clusters in the CuFeS2 sample under investigation. The formation of the clusters is most likely caused by the disturbance of the ordered arrangement of Fe and Cu atoms in the metal sublattice of the chalcopyrite, which is also responsible for the phase inhomogeneity of the crystal lattice. The inhomogeneity brings about strong phonon scattering, and, as a result, the temperature dependence of the thermal conductivity coefficient exhibits a behavior characteristic of partially disordered crystals.  相似文献   

11.
The temperature dependence of the electrical conductivity of the compound 2,4,4-trimethyl-4,5-dihydro-3H-benzo[b] [1,4] diazepin-1-ium tetrachlorocadmiate in the different phases follows the Arrhenius law. The imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism. In the temperature range 348–394 K, the activation energy of conductivity obtained from complex permittivity in regions I and II are, respectively, 1.03 and 0.33 eV, and E m (in regions I and II are, respectively, 0.97 and 0.36 eV) obtained from the modulus spectra is close, suggesting that the ion transport is probably due to a hopping mechanism. The Kohlrausch–Williams–Watts function, j(t) = exp( - ( \fractt\textKWW )b ) \varphi (t) = \exp \left( { - {{\left( {\frac{t}{{{\tau_{\text{KWW}}}}}} \right)}^\beta }} \right) , and the coupling model are utilized for analyzing electric modulus at various temperatures. The decreasing of β at 373 K is due to approaching the temperatures of change in the conduction mechanism of the sample.  相似文献   

12.
The temperature dependences of the electrical conductivity and the permittivity of TlInSe2 and TlGaTe2 crystals unirradiated and irradiated with 4-MeV electrons at a doze of 1016 cm−2 have been investigated. It has been established that electron irradiation leads to a decrease in the electrical conductivity σ and the permittivity ɛ over the entire temperature range under study (90–320 K). It has been revealed that the TlInSe2 and TlGaTe2 single crystals undergo a sequence of phase transitions characteristic of crystals of this type, which manifest themselves as anomalies in the temperature dependences σ = f(T) and ɛ = f(T). Electron irradiation at a doze of 1016 cm−2 does not affect the phase transition temperatures of the crystals under investigation.  相似文献   

13.
Electrical resistivity ρ and Hal coefficient R are measured as a function of the temperature (T = 1.7−310 K) and the magnetic field (up to H = 28 kOe) in zero-gap semiconductor CuFeS2 samples subjected to hydrostatic compression and under various heat-treatment conditions. At low temperatures, anomalies are observed in the kinetic effects related to the presence of ferromagnetic clusters: the magnetoresistance at T = 4.2 K and T = 20.4 K acquires a hysteretic character and thermopower α changes its sign at T < 15 K. The temperature dependence of conduction-electron concentration n in CuFeS2 has a power form in the temperature range T = 14−300 K, which is characteristic of the intrinsic conductivity in zero-gap semiconductors. In CuFeS2, we have n(T) ∝ T 1.2; in isoelectron compound Cu1.13Fe1.22Te2, we have n(T) ∝ T 1.93. Heat treatment is found to affect the intrinsic conductivity of CuFeS2, as the action of hydrostatic compression (carrier concentration changes); that is, the carrier concentration changes. However, a power form of the n(T) and ρ(T) dependences is retained.  相似文献   

14.
A pronounced step-like (kink) behavior in the temperature dependence of resistivity ρ(T) is observed in the optimally doped Sm1.85Ce0.15CuO4 thin films around T sf = 87 K and attributed to the manifestation of strong-spin fluctuations induced by Sm3+ moments with the energy ħωsf = k B T sf ≃ 7 meV. The experimental data are found to be well fitted by the residual (zero-temperature) ρres, electron-phonon ρe-ph(T) = AT, and electron-electron ρe-e(T) = BT 2 contributions in addition to the fluctuation-induced contribution ρsf(T) due to thermal broadening effects (of the width ωsf). According to the best fit, the plasmon frequency, impurity scattering rate, electron-phonon coupling constant, and Fermi energy are estimated as ωp = 2.1 meV, τ 0 −1 = 9.5 × 10−14 s−1, λ = 1.2, and E F = 0.2 eV, respectively. The text was submitted by the authors in English.  相似文献   

15.
Early work on the iron-arsenide compounds supported the view, that a reduced dimensionality might be a necessary prerequisite for high-T c superconductivity. Later, however, it was found that the zero-temperature upper critical magnetic field, H c2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we report measurements of the temperature dependence of the electrical resistivity, ρ(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single crystals in zero magnetic field and in Ba0.68K0.32Fe2As2 in static and pulsed magnetic fields up to 60 T. We find that the resistivity of both compounds in zero field is well described by an exponential term due to inter-sheet umklapp electron-phonon scattering between light electrons around the M point to heavy hole sheets at the Γ point in reciprocal space. From our data, we construct an H-T phase diagram for the inter-plane (H | c) and in-plane (H | ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data for 122 underdoped FeAs compounds, we find that H c2(T) is in fact anisotropic in optimally doped samples down to low temperatures. The anisotropy parameter, γ = H c2 ab /H c2 c , is about 2.2 at T c . For both field orientations we find a concave curvature of the H c2 lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism, we perfectly can describe H c2 and its anisotropy.  相似文献   

16.
In an EPR study of the catalytic system TiCl4 + Al(i-C4H9)3 in toluene and isopentane in TiCl4/oligopiperylene + Al(i-C4H9)3 in toluene, we have observed a dependence of the linewidth of the hyperfine structure on the mobility of the complex in solution. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 2, pp. 174–177, March–April, 2007.  相似文献   

17.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

18.
We have ground bulk samples to obtain nanoparticles of (Ga2S3)1–x (Eu2O3) x solid solutions, the sizes of which were determined using an atomic force microscope. The photoluminescence spectra of the nanoparticles were studied in the temperature interval 77–300 K. We have established the mechanisms for emission and transfer of energy from the matrix to the rare-earth ion, and we determined the Stokes shift (ΔS = 0.7 eV), the Huang–Rhys parameter (S = 16), and the optical phonon energy (ħ−ω = 23 meV).  相似文献   

19.
The magnetic and thermal properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite are investigated in wide temperature (4–350 K) range, including under hydrostatic pressure (0–1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T f of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value ∼4.5 K/GPa, while the magnetic ordering T MO temperature dependence is characterized by derivative value ∼13 K/GPa. The volume fraction of sample having ferromagnetic state is V fer ∼ 13% and it increases under a pressure of 1.1 GPa by ΔV fer ≈ 6%. Intensification of ferromagnetic properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.  相似文献   

20.
The behavior of the low-temperature specific heat C(T) for YBa2Cu3O6 + x single crystals with the doping level corresponding to the normal phase has been studied by the relaxation technique at different values of the applied magnetic field. It has been found that the C(T)/T plot exhibits such an anomaly as a steep increase with decreasing temperature from T about 4 K down to T ≤ 2 K (the minimum temperature value accessible in the experiment). The applied magnetic field as high as 9 T inverts this anomaly and leads to a sharp drop in C(T)/T during cooling within the same temperature range. A model involving the Schottky-type centers formulated in this work and the data on spin correlation functions has allowed us to calculate the temperature dependence of the specific heat, which fits the experimental curves quite well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号