首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic susceptibility, X-ray diffraction and resistivity measurements of the system Bi1.4Pb0.6Sr2Ca2−xGaxCu3Oy are reported for 0 x 2. The high-Tc 2223 phase with a Tc of 107 K for x = 0 exists for x 0.3. The low-Tc 2212 phase with a Tc of 75 K for x = 0 exists for the full range of x. The highest values of the critical temperature and the largest volume fraction of the low-Tc phase in compounds with Ga occur for x = 0.5 ± 0.1. The identification of CaO by X-ray diffraction for x 0.6 indicates that Ga replaces Ca in the compound.  相似文献   

2.
Samples of Bi2Sr2Ca1−xPrxCu2Oy have been characterized by resistivity and thermoelectric power measurements. All metallic samples show superconductivity with a maximum Tc = 90 K at X = 0.2. The sample of x = 0.6 shows a crossover from hopping conduction at low temperature above Tc to metallic conduction at high temperature. For the metallic samples below x = 0.6, the results of thermoelectric power are well fitted by both of a phenomenological band spectrum model and the Nagaosa and Lee model.  相似文献   

3.
The pressure effect on Tc of polycrystalline and single crystalline YBa2Cu3Ox investigated as a function of oxygen content x by ac-susceptibility measurements under helium pressure. In the overdoped region x> 6.93 the single crystals show a negative dTc/d p, as expected from the charge transfer model. For optimally doped samples with x = 6.93 we find dTc/d P = 0.4 K/GPa which points to pressure effects on Tc aside from charge transfer. In the underdoped region x < 6.93 the dTc/d p values obtained from the experiment depend strongly on the storage temperature of the sample during the experiment. When the samples are stored at temperatures well below 240 K throughout the entire experiment including pressure application and pressure release, dTc/d p increases to approx. 7 K/GPa at x = 6.7 but with a further decrease of the oxygen content the dTc/d p drops to approx. 2 K/GPa at x = 6.4. These effects are intrinsic to the YBa2Cu3Ox structure and can be explained by considering the anisotropic structure of YBa2Cu3Ox. The decrease of the c-axis lattice parameter results in a charge transfer to the CuO2-planes mainly [1], whereas the compression of the a- and b-axis lattice parameter is known to produce different pressure effects which are responsible for the peak in dTc/d p at x = 6.7 [2]. When pressure is changed at room temperature oxygen ordering effects occur which cause a relaxation of Tc to the equilibrium value Tc(p) at this pressure with a time constant depending on the oxygen content x. A decrease x results in a peak effect in dTc/d p at x = 6.7 again, which is enhanced to approx. 12 K/GPa. If the oxygen content is decreased further, dTc/d p first drops to 5 K/GPa at x = 6.6, but the increases to values of more than 20 K/GPa for x < 6.42. These giant pressure effects at low oxygen contents are mainly caused by a reversible Tc increase (dTc/d p)O due to pressure induced oxygen ordering via oxygen motion between unit cells.  相似文献   

4.
Pr concentration dependence of the superconducting transition temperature Tc in the Ho1−xPrxBa2Cu3O7−δ system is determined from measurements of DC electrical resistance. This dependence coincides with that for the parallely studied Y1−xPrxBa2Cu3O7−δ reference system. Both systems have the same value of the critical concentration xc=0.58, in accordance with nearly equal ionic radii of Ho3+ and Y3+ ions. It has been shown that the Tc(x) curve can be described with a single mechanism based on a decreasing number of sheet holes trapped by PrIV-ions, if one takes also into account that the number of these ions changes with x.  相似文献   

5.
The specific heats of Sm1+xBa2−xCu3Oy solid solution of orthorhombic and tetragonal structure were measured in the temperature range 80–300 K. The data were analyzed in the framework of the Debye model with dilatation correction. The tendency to lower the high-temperature limit of the Debye temperature, θHTD, with the oxygen deficiency was noticed. In contrast, the increase of Sm substitution causes a rise of θHTD. The temperature dependence θD(T) was calculated for each compound from the series for the whole temperature region investigated.  相似文献   

6.
Experiments on the cuprate superconductors demonstrate that these materials may be viewed as a stack of Josephson junctions along the direction normal to the CuO2 planes (the c-axis). In this paper, we present a model which describes this intrinsic Josephson coupling in terms of incherent quasiparticle hopping along the c-axis arising from wave-function overlap, impurity-assisted hopping, and boson-assised hopping. We use this model to compute the magnitude and temperature T dependence of the resulting Josephson critical current jc(T) for s- and d-wave superconductors. Contrary to other approaches, d-wave pairing in this model is compatible with an intrinsic Josephson effect at all hole concentrations and leads to jc(T) T at low T. By parameterizing our theory with c-axis resistivity data from YBa2Cu3O7−δ (YBCO), we estimate jc(T) for optimally doped and underdoped members of this family. jc(T) can be measured either directly or indirectly through microwave penetration depth experiments, and current measurements on Bi2Sr2CaCu2O8 and La2−xSrxCuO4 are found to be consistent with s-wave pairing and the dominance of assisted hopping processes. The situation in YBCO is still unclear, but our estimates suggest that further experiments on this compound would be of great help in elucidating the validity of our model in general and the pairing symmetry in particular.  相似文献   

7.
The effects of the thallium and mercury content x on the as-sintered and post annealed samples of MxPb0.4Sr1.6Ba0.4Ca2Cu3O8+δ {M: Tl (0.32≤x≤0.74) or Hg (0.18≤x≤0.68)} have been studied by magnetization and transport measurements. For Tl-1223 we have found the optimum Tl doping level to be x=0.53 regarding the grain properties, the content of superconducting phase, the first penetration field Hplwl, the transport (Jctr), magnetic intergrain (JcM) and intragrain (Jcg) critical current densities. The critical temperature Tc of the as-sintered Tl-1223 sample decreased with increasing Tl content. Post-annealing in oxygen improved the Tc for Tl contents of x≥0.53 and had generally positive effects on the critical current densities. The intergrain properties of the Hg-1223 samples were much worse than those of the Tl-based superconductors.  相似文献   

8.
The effects of Cu doping in MgB2 superconductor has been studied at different processing temperatures. The polycrystalline samples of Mg1−xCuxB2 with x = 0.05 were synthesized through the in-situ solid sate reaction method in argon atmosphere at different temperature range between 800–900 °C. The samples were characterized through X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and low temperature RT measurement techniques for the phase verification, microstructure and superconducting transition temperature, respectively. The XRD patterns of Mg1−xCuxB2 (x = 0.05) do not exhibit any impurity traces of MgB4 or MgB6 and they show the sharp transition in the samples prepared at 850 °C. The onset transition temperature of the prepared samples is around 39 K, which is almost the same as that for the pure MgB2. This indicates that Cu doping in MgB2 does not affect the transition temperature. The SEM micrograph of Mg0.95Cu0.05B2 has shown that the sample is dense with grain size smaller than 1 μm.  相似文献   

9.
The structural analysis and investigation of magnetic properties were carried out on rapidly quenched Fe100−xSmx (10.5 x 80) alloys. Amorphous alloys are fabricated in a wide composition range from x = 17 to 72.5. After heating the amorphous alloys up to 900 K, they transform into metastable phase I (Tc = 465 K)+ -Fe (x < 20), metastable phase II (Tc = 555 K)+-Fe (20 x 33.3) and Fe2Sm+Sm (x40). The composition dependence of Curie temperature and magnetization is found to be similar to that of amorphous Fe-(Nd, Pr) alloys. A maximum coercive force of about 1.1 kOe at 300 K and 12 kOe at 77 K is obtained in the x = 40 alloy. The rapid decrease in coercive force with raising temperature can be explained by the wall pinning model proposed by Gaunt. The pronounced composition dependence of these magnetic properties for the amorphous Fe-Sm alloys can be considered to be caused by the change in the short-range atomic order with Sm concentration on the basis of the results of X-ray structural analysis.  相似文献   

10.
In order to investigate the positive and negative pressure effects on superconducting properties for MgCNi3, chemical pressure was applied by means of Zn-doping to Mg site (Mg1−xZnxCNi3) and by substituting Mg with Cd (CdCNi3). The lattice constant decreases (increases) with increasing Zn (Cd) content. In the magnetic measurements, superconducting transition temperature (Tc) is decreasing with increasing Zn content and disappears at x > 0.3. While for CdCNi3, Tc also decreases down to 3.4 K. The result seems not to be fully understandable in the case of CdCNi3 since Tc seems to rise owing to the increase of density of states at Fermi energy caused by lattice expansion.  相似文献   

11.
Superconductivity and crystallographic properties of La2 − xMxCuO4 − δ (M = Na, K) are studied. In the La2 − xMxCuO4 − δ system, superconductivity is detected for x 0.2. Oxygen content analysis shows that the system has more oxygen vacancies than the La2 − xSrxCuO4 − δ system. These oxygen vacancies may reduce the hole concentration, and high Na-doping is needed to produce superconductivity. In the La2 − xKxCuO4 − δ system, superconductivity is observed for the first time. Resistivity and magnetic susceptibility measurements show that Tc(onset) is 40 K and the Meissner volume fraction is about 4% for x = 0.7. The system changes from orthorhombic to a tetragonal K2NiF4 structure at x ≈ 0.3 and only tetragonal samples show superconductivity.  相似文献   

12.
The effect of Cd doping on transport, magnetotransport, and magnetic properties has been investigated in the perovskite La1−xCdxMnO3 (0x0.5) systems. The ρ(T) curves exhibit a sharp metal insulator transition (Tp1), which is close to paramagnetic to ferromagnetic transition (Tc) obtained from MT curves for all samples. In addition, ρ(T) curves for Cd doped samples exhibit another broad transition (TP2) below Tp1. This transition becomes more prominent and the transition temperature (Tp2) shifts to lower temperature with increasing Cd content. Such double peak behavior in the ρ(T) curve is attributed to the phase separation between the ferromagnetic metallic phases and the ferromagnetic insulating phases induced by the electronic inhomogeneity in the samples.  相似文献   

13.
Pr substituted at constant Ca concentration for Y in (Y1−xyPrxCay)Ba2Cu3O7−δ superconductors have been prepared under identical conditions and the temperature dependence of the electrical resistivity of these samples are measured. The resistively determined values of Tc decrease linearly with increasing x (0 ≤ x ≤ 0.2) for constant y = 0.10 and 0.15 which provides convincing evidence that the suppression of superconductivity by Pr is mainly due to magnetic pair breaking. The suppression of superconductivity can also be correlated to the observed changes in oxygen content determined by iodometric analysis and to the average Cu-valences. However, it is found that the observed suppression of Tc cannot be compensated by appropriate hole doping with Ca.  相似文献   

14.
V1−xCrxSe(0.05x0.83) shows a temperature dependence of the magnetic susceptibility χ which is similar to that of CrSe. At small x, the magnetic transition temperature Tt(x) and the Weiss constant θp(x) decrease with decreasing x, while the effective number of Bohr magnetons per Cr (Peff) significantly increases.  相似文献   

15.
Superconductivity in polycrystalline YBa2AlxCu(3−x)O7−δ materials was characterized by dynamic AC and quasistatic DC magnetometry. Intragranular persistent current density and low-loss intergranular critical current density were deduced using DC and AC techniques, respectively. Addition of aluminum produced modest increases in the intragranular persistent current for x < 0.2, but drastically reduced the intergranular critical current density for x = 0.2. The critical temperature Tc for superconductivity decreased only 4% for Al content up to x = 0.2.  相似文献   

16.
Single crystals with known Tc values of Y1−xPrxBa2Cu3O7−δ (Y---Pr1:2:3) and YBa2Cu3−xZn3−xZnxO7−δ (Y---Zn1:2:3) systems are studied by Raman measurements. The Raman spectra for (Y---Pr1:2:3) single crystals show that the frequencies of Ba and Oz modes increase as the Pr content increases. The results are consistent with the hole-localization scheme proposed for the suppression of superconductivity in the polycrystalline Y---Pr1:2:3 systems. On the other hand, in the Y---Zn1:2:3 system, all the Raman modes do not change in frequencies. However, the FWHM of the Cu(2) mode increases with the decrease of Tc, indicating strong scattering of charge carriers by the substituted Zn ions in the CuO2 planes. The induced disorder in the CuO2 planes may be related with suppression of Tc in the Y---Zn1:2:3 system. Thus, the suppression mechanism in the Y---Zn1:2:3 systems seems to be different from that in the Y---Pr1:2:3 systems.  相似文献   

17.
The structural, electrical and magnetic properties of the superconducting ferromagnets, Gd1.4−xDyxCe0.6Sr2RuCu2O10 (x=0–0.6) are systematically investigated as a function of Dy doping and temperature. These compounds are characterized by high temperature superconductivity (Tc ranging from 20 to 40 K depending upon the Dy content) co-existing with weak ferromagnetism with two magnetic transitions (TM2 ranging from 95 to 106 K and TM1 around 120 K). Doping with Dy gives no significant structural changes except for a minor change in the c/a ratio. However the superconducting transition temperature is significantly suppressed and magnetic ordering temperature enhanced on Dy doping. These effects are described and discussed.  相似文献   

18.
The effects of Fe-substitution of YBa2Cu3Oy have been investigated by means of Raman scattering, X-ray diffraction, resistivity and susceptibility measurements. A series of samples of YBa2(Cu1 − xFex)3Oy with different dopant concentration (0 x 0.15) has been prepared in two batches, the second set having undergone twice the heat and mechanical treatment used to produce the first batch. Considerable improvement in the superconducting transition temperature, Tc, is obtained upon reprocessing. A phase transformation from orthorhombic to tetragonal symmetry is observed for x=0.05 from the X-ray measurements in agreement with previous work. Using a micro-Raman technique, all five Ag vibrational modes have been measured and their dependence on Fe-concentration is analyzed. There are indications that iron substitutes for copper at both sites and that the structure is a mixture of orthorhombic and tetragonal microdomains for all x.  相似文献   

19.
Magnetic measurements of various types have played an essential role in establishing the novel normal state characteristics of high transition temperature (Tc) superconductors with Tc > 23 K. Among these materials, the highest Tc's ( 125 K) are exhibited by the layered cuprates. In this paper, the normal state magnetic susceptibilities of the cuprates are reviewed and interpreted in the context of magnetic neutron scattering and other magnetic measurements, using the La2−xMxCuO4-type and YBa2Cu3O6+x-type materials as prototypical examples. The evolution of the magnetism upon doping the insulating antiferromagnetic “parent” compounds with x = 0 to form the high temperature superconductors is described. A recurrent property which differentiates these materials from conventional superconductors is the existence of strong antiferromagnetic correlations in the metallic state on the same sublattice of the structure in which the itinerant carriers reside.  相似文献   

20.
The phase diagram for the CuO2-based superconductors is found to be consistent with an extended Hubbard Hamiltonian with competing positive-and negative-U interactions on a 2D lattice where sites are plaquettes formed by clusters of Cu and O atoms. The negative-U effective interactions are implied by the XY anisotropy in the Cu-Cu spin couplings and local hole pairing corresponds to vortex-antivortex spin configurations. The phase progression observed with the variation of dopant fraction x can be obtained via gradual implementation of canonical transformation that maps the properties of the positive-U Hubbard model at half-filling into those of the negative-U model away from half-filling. In the strong-coupling limit this process is described in terms of percolation-driven dilute magnetism for both spins (U>0) and pseudospins (U−1x−1o−1x for x→O as seen in La2-xSrxCuO4. (ii) An x-dependent reduction of spin fluctuations at low temperatures that conforms with NMR studies of La2-xSrxCuO4. And, (iii) a reduced superconducting transition locus Tc(x)/Tcmax in agreement with the universal shape and location revealed by analysis of experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号