首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
M. Bounouar  Ch. Scheurer   《Chemical physics》2008,347(1-3):194-207
The accuracy of the vibrational self-consistent field (VSCF) method for the computation of anharmonic vibrational frequencies in the infrared (IR) spectrum of formamide and thioformamide is investigated. The importance of triple potentials in the commonly used hierarchical expansion of the potential energy surface (PES) is studied in detail. The PES is expanded in terms of Cartesian as well as internal coordinate normal mode displacements. It is found that triples play an important role when using rectilinear coordinates. A VSCF computation based on rectilinear displacements exhibits serious shortcomings which are only remedied by a large vibrational configuration interaction (VCI) treatment including triple potentials. These limitations are partially removed when using curvilinear coordinates. The merits and disadvantages of either type of displacements for the generation of the PES are discussed.  相似文献   

2.
3.
4.
The adiabatic potential energy surfaces (PES ) which are most likely to be involved in the elementary mechanism presiding over charge-exchange and direct inelastic collisions between O2 molecules and collimated beams of protons are discussed. The general behavior of Diatomics-in-molecule (DIM ) model interactions is analyzed in great detail as a function of the molecular vibrational coordinate and of the other internal nuclear coordinates. The general features of the lower two PES are discussed, and the corresponding nonadiabatic coupling terms between these surfaces are also computed and analyzed. These model results turn out to provide very useful indications on the specific dynamical features that are to be considered responsible for the inelastic, vibronic transitions observed in the target molecule during collisional experiments.  相似文献   

5.
An ab initio potential energy surface (PES) of ArF2 system has been obtained by using MP4 calculation with a large basis set including bond functions. There are two local minimums on the PES: one is T-shaped and the other is L-shaped. The L-shaped minimum is the global minimum with a well depth of -119.62 cm- 1 at R = 0.3883nm. The T-shaped minimum has a well depth of -85.93cm -1 at R = 0.3486 nm. A saddle point is found at R = 0.3486 and θ = 61° with the well depth of -61.53 cm-1. The vibrational energy levels have been calculated by using VSCF-CI method. The results show that this PES supports 27 vibrational bound states, and the ground states are two degenerate states assigned to the L-type vibration.  相似文献   

6.
7.
A double minimum six-dimensional potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D2h) B4 isomer in its 1Ag electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm(-1) for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B4 it is the B1g (D4h) mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of 11B4 are calculated to be (splittings in parentheses): G(0)=2352(22) cm(-1), nu1(A1g)=1136(24) cm(-1), nu2(B1g)=209(144) cm(-1), nu3(B2g)=1198(19) cm(-1), nu4(B2u)=271(24) cm(-1), and nu5(Eu)=1030(166) cm(-1) (D4h notation). Their variations in all stable isotopomers were investigated. Due to the presence of strong anharmonic resonances between the B1g in-plane distortion and the B2u out-of-plane bending modes, the higher overtones and combination levels are difficult to assign unequivocally.  相似文献   

8.
An approach to the calculation of Franck–Condon factors in curvilinear coordinates is outlined. The approach is based on curvilinear normal coordinates, which allows for an easy extension of Duschinsky’s transformation to the case of curvilinear coordinates, and on the power series expansion of the kinetic energy operator. Its usefulness in the case of molecules undergoing large displacements of their equilibrium nuclear configurations upon excitation is then demonstrated by an application to the vibrational structure of the photoelectron spectrum of ammonia, using an anharmonic potential only for the symmetric stretching and bending coordinates of the radical cation.  相似文献   

9.
We have studied the vibrational high-frequency spectrum of the water trimer computationally. We expand an earlier study [J. Chem. Phys. A 2009, 113, 9124-9132] where we approximated the water trimer as three individually vibrating water monomer units. Some intramolecular potential energy coupling terms are now included in the previous model. The six OH bond lengths and the three HOH bending angles are used as the internal coordinates. The kinetic energy operator is a sum of the kinetic energy operators of the monomer units. We use the coupled cluster method with single, double, and perturbative triple excitations method [CCSD(T)] with augmented correlation consistent polarized valence triple-ζ (aug-cc-pVTZ) basis set to calculate the potential energy surface (PES). The counterpoise correction is included in the one-dimensional part of the PES. We calculate the vibrational energy eigenvalues using the variational method. The corresponding eigenfunctions are used to obtain the absorption intensities.  相似文献   

10.
An alternative procedure for the calculation of highly excited vibrational levels in S0 formaldehyde was developed to apply to larger molecules. It is based on a new set of symmetrized vibrational valence coordinates. The fully symmetrized vibrational kinetic energy operator is derived in these coordinates using the Handy expression [Molec. Phys. 61, 207 (1987)]. The potential energy surface is expressed as a fully symmetrized quartic expansion in the coordinates. We have performed ab initio electronic computations using GAMESS to obtain all force constants of the S0 formaldehyde quartic force field. Our large scale vibrational calculations are based on a fully symmetrized vibrational basis set, in product form. The vibrational levels are calculated one by one using an artificial intelligence search/selection procedure and subsequent Lanczos iteration, providing access to extremely high vibrational energies. In this work special attention has been given to the CH stretch system by calculating the energies up to the fifth CH stretch overtone at ∼16000 cm−1, but the method has also been tested on two highly excited combination levels including other lower frequency modes.   相似文献   

11.
An eight-dimensional time-dependent quantum dynamics wave packet approach is performed for the study of the H2+C2H-->H+C2H2 reaction system on a new modified potential energy surface (PES) [L.-P. Ju et al., Chem. Phys. Lett. 409, 249 (2005)]. This new potential energy surface is obtained by modifying Wang and Bowman's old PES [J. Chem. Phys. 101, 8646 (1994)] based on the new ab initio calculation. This new modified PES has a much lower transition state barrier height at 2.29 kcal/mol than Wang and Bowman's old PES at 4.3 kcal/mol. This study shows that the reactivity for this diatom-triatom reaction system is enhanced by vibrational excitations of H2, whereas the vibrational excitations of C2H only have a small effect on the reactivity. Furthermore, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. The comparison of the rate constant between this calculation and experimental results agrees with each other very well. This comparison indicates that the new modified PES corrects the large barrier height problem in Wang and Bowman's old PES.  相似文献   

12.
The full potential energy surface (PES) for the collinear Ar 4 + cluster as a function of the three internuclear distances is computed at the post-Hartree-Fock level using Density Functional Theory (DFT) methods to treat dynamic correlation effects. The behaviour of the overall configuration energy minima as the central Ar 2 + bond stretches is analysed as a function of the fragmentation coordinates of the wing atoms. The coupling between the stretching coordinate and the fragmentation coordinates is also analysed over the whole PES. The calculations suggest that large vibrational energy content in the core dimer ion causes localization of the coupling with either wing atoms which could in turn favour energetically the sequential fragmentation, while Ar 4 + with a vibrationally cold core markedly lowers any energy barrier to fragment in a concerted fashion. Such suggestions provide further useful information for what has been found in some of the experimental studies on this ionic system (and on larger ionized argon clusters) and underline the possible role which the internal vibrational energy content of the ionic cluster can play in the fragmentation.  相似文献   

13.
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.  相似文献   

14.
A new method is suggested for separating the vibrational, rotational, and translational motions of polyatomic molecules using curvilinear vibrational coordinates that are linear with respect to the natural vibrational coordinates. It is shown that, in this case, Coriolis interactions between the vibrational and rotational motions are absent. The solutions of the anharmonic vibrational-rotational problems in the curvilinear and linear vibrational coordinates are compared. The absence of Coriolis interactions between the vibrational and rotational motions in the curvilinear vibrational coordinates is proved numerically. The same conclusion is additionally supported by calculations of the anharmonic vibrational energy levels for the H2O, H2S, NO2, SO2, and ClO2 molecules in the linear and curvilinear vibrational coordinates using the Hamiltonian designed in the curvilinear vibrational coordinates with and without Coriolis vibrational-rotational interactions. Volgograd Pedagogical University. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 2, pp. 239–254, March–April, 1995. Translated by I. Izvekova  相似文献   

15.
We perform six-dimensional (6D) quantum wavepacket calculations for H2 dissociatively adsorbing on Cu(100) from a variety of rovibrational initial states. The calculations are performed on a new potential energy surface (PES), the construction of which is also detailed. Reaction probabilities are in good agreement with experimental findings. Using a new flux analysis method, we calculate the reaction probability density as a function of surface site and collision energy, for a variety of initial states. This approach is used to study the effects of rotation and vibration on reaction at specific surface sites. The results are explained in terms of characteristics of the PES and intrinsically dynamic effects. An important observation is that, even at low collision energies, reaction does not necessarily proceed predominantly in the region of the minimum potential barrier, but can occur almost exclusively at a site with a higher barrier. This suggests that experimental control of initial conditions could be used to selectively induce reaction at particular surface sites. Our predictions for site-reactivity could be tested using contemporary experimental methods: The calculations predict that, for reacting molecules, there will be a dependence of the quadrupole alignment of j on the incident vibrational state, v. This is a direct result of PES topography in the vicinity of the preferred reaction sites of v = 0 and v = 1 molecules. Invoking detailed balance, evidence for this difference in preferred reaction site of v = 0 and 1 molecules could be obtained through associative desorption experiments.  相似文献   

16.
We present an adaptive density-guided approach for the construction of Born–Oppenheimer potential energy surfaces (PES) in rectilinear normal coordinates for use in vibrational structure calculations. The procedure uses one-mode densities from vibrational structure calculations for a dynamic sampling of PESs. The implementation of the procedure is described and the accuracy and versatility of the method is tested for a selection of model potentials, water, difluoromethane and pyrimidine. The test calculations illustrate the advantage of local basis sets over harmonic oscillator basis sets in some important aspects of our procedure.  相似文献   

17.
An analysis of the influence of isotope substitution on the system of electronic-nuclear equations for an arbitrary molecular system was used as a basis for formulating invariance conditions with respect to isotope substitution of the potential energy surface written in the Cartesian coordinates rigidly bound with the center of mass of the molecule (internal Cartesian coordinates). This property of the potential function obviates the necessity of using curvilinear natural coordinates, which can be replaced by Cartesian coordinates, in theoretical studies of the vibrational spectra of molecules and their isotopomers and in solving the direct and inverse anharmonic problems. An equation for the quantum-mechanical Hamiltonian of a normal molecule in internal Cartesian coordinates was obtained.  相似文献   

18.
The potential energy surface (PES) for the CHF2CHO molecule in the excited S1 state is calculated by the CASSCF method. The features of the 1‐ and 2‐D cross‐sections of PES are considered in comparison with those of the relative molecules. The vibrational frequencies are calculated in harmonic approximation and the vibrational energy levels for the inversion motion of the carbonyl fragment CCHaO and for the torsion motion of the CHF2‐top are calculated in anharmonic approximation by the 1‐ and 2‐D variational methods. The calculated data are compared with the experimental ones. The problems of the experimental data interpretation are considered. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

19.
The use of generalized internal coordinates for the variational calculation of excited vibrational states of symmetrical bent triatomic molecules is considered with applications to the SO2, O3, NO2, and H2O molecules. These coordinates depend on two external parameters which can be properly optimized. We propose a simple analytical method to determine the optimal internal coordinates for this kind of molecules based on the minimization with respect to the external parameters of the zero-point energy, assuming only quadratic terms in the Hamiltonian and no quadratic coupling between the optimal coordinates. The optimal values of the parameters thus obtained are shown to agree quite well with those that minimize the sum of a number of unconverged energies of the lowest vibrational states, computed variationally using a small basis function set. The unconverged variational calculation uses a basis set consisting of the eigenfunctions of the uncoupled anharmonic internal coordinate Hamiltonian. Variational calculations of the excited vibrational states for the four molecules considered carried out with an increasing number of basis functions, also evidence the excellent convergence properties of the optimal internal coordinates versus those provided by other normal and local coordinate systems.  相似文献   

20.
We present an analytic scheme for the calculation of pure vibrational contributions to linear and nonlinear optical properties such as the polarizability and the first and second hyperpolarizabilities. The formalism is fully expressed in terms of a perturbation- and time-dependent atomic orbital basis, using the elements of the density matrix in the atomic orbital basis as the basic variables. We calculate perturbed densities up to third order with respect to the electric field in accordance with the n + 1 rule, and the approach is therefore applicable for the calculation of pure vibrational contributions involving all vibrational coordinates in large molecular complexes. In the case of static electric fields, we therefore only need to calculate 19 response equations, independent of the size of the molecule. If we can determine the molecular energy and force field, the calculation of pure vibrational contributions to the nonlinear optical properties of the molecule is therefore a rather straightforward task. We illustrate the implementation by calculating pure vibrational contributions to the first and second hyperpolarizabilities of molecules containing up to 66 atoms using basis sets of good quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号