共查询到20条相似文献,搜索用时 27 毫秒
1.
Adsorption and reactions of NO over the clean and CO-preadsorbed Ir(111) and Rh(111) surfaces were investigated using infrared
reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). Two NO adsorption states, indicative
of hollow and atop sites, were present on Ir(111). Only NO adsorbed on hollow sites dissociated to Na and Oa. The dissociated Na desorbed as N2 by recombination of Na and by a disproportionation reaction between atop-NO and Na. Preadsorbed CO inhibited atop-NO, whereas hollow-NO was not affected. Adsorbed CO reacted with Oa and desorbed as CO2. NO adsorbed on the fcc-hollow, atop, and hcp-hollow sites in that order over Rh(111). The hcp-NO was inhibited by preadsorbed
atop-CO, and fcc-NO and atop-NO were inhibited by CO preadsorbed on each type of the sites, indicating that NO and CO competitively
adsorbed on Rh(111). From the Rh(111) surface-coadsorbed NO and CO, N2 was produced by fcc-NO dissociation, and CO2 was formed by reaction of adsorbed CO with Oa from dissociated fcc-NO. 相似文献
2.
Wenhua Chen Dr. Quantong Shen Dr. Robert A. Bartynski Prof. Dr. Payam Kaghazchi Dr. Timo Jacob Dr. 《Chemphyschem》2010,11(12):2515-2520
Temperature programmed desorption (TPD) and density functional theory (DFT) are used to investigate adsorption sites and reaction of coadsorbed NO and CO on planar Ir(210) and faceted Ir(210) with tailored sizes of three‐sided nanopyramids exposing (311), (31${\bar 1}$ ) and (110) faces. Both planar and faceted Ir(210) are highly active for reduction of NO by CO with high selectivity to N2, which is accompanied by simultaneous oxidation of CO. Evidence is found for structure sensitivity in adsorption sites and reaction of coadsorbed NO and CO on faceted Ir(210) versus planar Ir(210). Strong interaction between NO and CO at high NO exposure and one‐monolayer CO pre‐coverage results in “explosive” evolution of N2 and CO2 on planar Ir(210) and size effects in reduction of NO by CO on faceted Ir(210) for average facet size ranging from 5 to 14 nm without change in facet structure. 相似文献
3.
《Electroanalysis》2005,17(11):947-952
Iridium oxide films (IROFs) are known to have an enhanced or the so‐called super‐Nernstian (<59 mV/pH) pH‐sensitivity. The intention in the present study was to find out the reasons of such behavior and also to elucidate the nature of iridium anodic oxidation processes. The methods employed were combined cyclic voltammetry and chronopotentiometry. Iridium layers of 0.1 to 0.2 μm thickness, deposited thermally on titanium or gold‐plated titanium substrates, were used for investigations. IROFs on the surface of working electrodes were formed anodically by applying a constant potential in deaerated and oxygen‐containing solutions of 0.5 M H2SO4, 0.1 M KOH and 0.5 M H3PO4+KOH. Linear pH‐dependences of the stationary open‐circuit potential with the slopes close to 59 mV/pH were found for iridium electrode oxidized at 0.4 V–0.8 V (RHE) in deaerated and at 0.8 V–1.2 V (RHE) in O2‐containing solutions. They were attributed to reversible Ir/Ir(OH)3 and Ir/ IrO2?nH2O metal‐oxide electrodes, respectively. It has been suggested that the main current peaks seen in the voltammograms of iridium electrode in acid and alkaline solutions are of different nature. The difference between iridium electrode surface states in acid and alkaline solutions has been presumed to be the main reason of super‐Nernstian pH‐sensitivity of the IROFs. On the basis of the results obtained standard potential of Ir/Ir(OH)3 electrode and the solubility product of Ir(OH)3 have been evaluated: =0.78±0.02 V and Ksp=3.3×10?64. 相似文献
4.
In the Ir(210)/aqueous HCl solution system the “hydrogen adsorption region” is due to the combined process of hydrogen and
chloride ion adsorption. We demonstrate that by using impedance spectroscopy the rates of, and charges associated with, hydrogen
and chloride adsorption rates can be determined separately.
Published in Elektrokhimiya in Russian, 2009, Vol. 45, No. 1, pp. 32–41.
Dedicated to the 100th anniversary of B.V. Ershler.
The text was submitted by authors in English. 相似文献
5.
Fujitani T Nakamura I Kobayashi Y Takahashi A Haneda M Hamada H 《The journal of physical chemistry. B》2005,109(37):17603-17607
Adsorption and reactions of NO on clean and CO-precovered Ir(111) were investigated by means of X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HR-EELS), infrared reflection absorption spectroscopy (IRAS), and temperature-programmed desorption (TPD). Two NO adsorption states, indicative of fcc-hollow sites and atop sites, were present on the Ir(111) surface at saturation coverage. NO adsorbed on hollow sites dissociated to Na and Oa at temperatures above 283 K. The dissociated Na desorbed to form N2 by recombination of Na at 574 K and by a disproportionation reaction between atop-NO and Na at 471 K. Preadsorbed CO inhibited the adsorption of NO on atop sites, whereas adsorption on hollow sites was not affected by the coexistence of CO. The adsorbed CO reacted with dissociated Oa and desorbed as CO2 at 574 K. 相似文献
6.
NO在氧预吸附Ir(100)表面吸附和解离的第一性原理研究 总被引:1,自引:0,他引:1
采用第一性原理密度泛函理论和周期性平板模型研究了NO在O预吸附Ir(100)表面的吸附和解离, 并考察了预吸附的O对可能产物N2, N2O和NO2的选择性的影响. 优化得到反应过程中初态、 过渡态和末态的吸附构型, 并获得反应的势能面信息. 计算结果表明, NO在O预吸附表面最稳定的吸附位是桥位, 其次是顶位. 桥位和顶位的NO在表面存在两条解离通道, 即直接解离通道和由桥位和顶位扩散到平行空位, 继而发生N-O键断裂生成N原子和O原子的解离通道. 此分离机理与洁净表面上NO解离机理相同, 但后一种解离方式优于前一种, 是NO在表面上解离的主要通道. 预吸附的O原子在不同程度上抑制了NO的解离, 导致桥位和顶位NO解离互相竞争. 在O预吸附Ir(100)表面, N2气是唯一的产物, 不会有副产物N2O和NO2的生成, 与实验结果一致. 预吸附的O在N/O低覆盖度下几乎不影响N2气的生成, 但在较高覆盖度下则促进了N2气的生成. 相似文献
7.
Beni Z Guidoni L Laurenczy G Roethlisberger U Roulet R 《Dalton transactions (Cambridge, England : 2003)》2005,(2):310-314
As observed by variable-temperature and -pressure 13C NMR, intramolecular carbonyl scrambling in Ir2Rh2(CO)12 and Ir4(CO)11(micro-SO2) proceeds via a 'change of basal face' mechanism. In both cases the site exchange process has a positive activation volume suggesting that the transition states contain longer M-M distances compared to ground states of Cs symmetry. Transition state structures have been located by density functional calculations including relativistic effects. These structures contain a new symmetry plane which interchanges the indistinguishable starting and final geometries. Both transition state structures contain one significantly elongated M-M distance, bearing the bridging ligand unaffected by the site exchange. Differences in molecular volumes of ground and transition state geometries as calculated from Connolly surfaces and electron densities confirm the volume expansion in both cases. The sign of the activation volume is therefore a good criterion for distinguishing between the two main site exchange processes occurring in tetrahedral d9 carbonyl clusters, i.e. the 'change of basal face' process and the 'merry-go-round' process, as the latter presents a negative activation volume. 相似文献
8.
刊用FT-IR和UV技术跟踪反应进程,研究了在Me_3NO存在下Ir_4(CO)_(12)和Ir_4(CO)_(11)PPh_3分别在CHCl_3—C_2H_5OH和CHCl_3溶剂中取代羰基反应的动力学与机理。结果表明反应遵循二级速率定律:r=k_2[Me_3NO][配合物]。该速率方程与缔合机理相一致。将Ir_4(CO)_(11)L和Os_3(CO)_(11)L(L=CO,PPh_3)体系的动力学结果相比较,着重讨论了桥基因素对反应活性的影响。 相似文献
9.
Density functional theory (DFT) and periodic slab model have been used to systemically study the adsorption and dissociation of NO and the formation of N(2) on the Ir(100) surface. The results show that NO prefers the bridge site with the N-end down and NO bond-axis perpendicular to the Ir surface, and adsorption to the top site is only 0.05 eV less favorable, whereas the hollow adsorption is the least stable. Two dissociation pathways for the adsorbed NO on bridge or top site are located: One is a direct decomposition of NO and the other is diffusion of NO from the initial state to the hollow site followed by dissociation into N and O atoms. The latter pathway is more favorable than the former one due to the lower energy barrier and is the primary pathway for NO dissociation. Based on the DFT results, microkinetic analysis suggests that the recombination of two N adatoms on the di-bridge sites is the predominant pathway for N(2) formation, whereas the formation of N(2)O or NO(2) is unlikely to occur during NO reduction. The high selectivity of Ir(100) toward N(2) is in good agreement with the experimental observations. 相似文献
10.
11.
Fluorination of [Os(3)CO(12)] in HF/SbF(5) affords [Os(CO)(4)(FSbF(5))(2)]. According to its crystal structure (orthorhombic, Pna2(1), a = 1590.3(3), b = 1036.6(1), c = 878.2(2) pm, Z = 4), the two SbF(6) units occupy cis positions in the octahedral environment around the Os atom. Fluorination of [Ir(4)(CO)(12)] in HF/SbF(5) produced three different compounds: (1) [Ir(4)(CO)(8)(mu-F)(2)(Sb(2)F(11))(2)] (tetragonal, P4n2, a = 1285.2(2), c = 952.9(1) pm, Z = 2). Here, two of the six edges of the Ir(4) tetrahedron in [Ir(4)CO(12)] are replaced by bridging fluorine atoms. (2) [fac-Ir(CO)(3)(FSbF(5))(2)HF]SbF(6).HF (orthorhombic, Pnma, a = 1250.6(1), b = 1340.7(2), c = 1092.6(2) ppm, Z = 4). The Ir(4) tetrahedron in Ir(4)(CO)(12) is completely broken down, but the facial Ir(CO)(3) configuration is retained. (3) [mer-Ir(CO)(3)F(FSbF(5))(2)] (triclinic, P1, a = 834.9(1), b = 86 4.9(1), c = 1060.0(1) pm, alpha = 69.173(4) degrees, beta = 77.139(4) degrees, gamma = 88.856(4) degrees, Z = 2). 相似文献
12.
13.
14.
In this article we consider the CO oxidation on Ir(111) surfaces under large external noise with large autocorrelation imposed on the composition of the feed gas, both in experiments and in theory. We report new experimental results that show how the fluctuations force the reaction rate to jump between two well defined states. The statistics of the reaction rate depend on those of the external noise, and neither of them have a Gaussian distribution, and thus they cannot be modeled by white or colored noise. A continuous-time discrete-state Markov process is proposed as a suitable model for the observed phenomena. The model captures the main features of the observed fluctuations and can be modified to accommodate other surface reactions and other systems under non-Gaussian external noise. 相似文献
15.
Hong Yang Javier Fdez. Sanz Yan Wang Jerry L. Whitten 《Journal of Cluster Science》1999,10(4):581-590
The adsorption energetics of NO and CO on Pt(111) are studied using an ab initio embedding theory. The Pt(111) surface is modeled as a three-layer, 28-atom cluster with the Pt atoms fixed at bulk lattice sites. Molecular NO is adsorbed at high symmetry sites on Pt(111), with the fcc threefold site energetically more favorable than the hcp threefold and bridge sites. The calculated adsorption energy at the fcc threefold site is 1.90 eV, with an N-surface distance of 1.23 Å. The NO molecular axis is perpendicular to the Pt(111) surface. Tilting the O atom away from the surface normal destablizes adsorbed NO at all adsorption sites considered. On-top Pt adsorption has been ruled out. The Pt(111) potential surface is very flat for CO adsorption, and the diffusion barriers from hcp to fcc sites are 0.03 eV and less than 0.06 eV across the bridge and the atop sites, respectively. Calculated adsorption energies are 1.67, 1.54, 1.51, and 1.60 eV at the fcc threefold, hcp threefold, bridge, and atop sites, respectively. Calculated C-surface distances are 1.24 Å at the fcc threefold site and 1.83 Å at the atop site. It is concluded that NO and CO adsorption energetics and geometries are different on Pt(111). 相似文献
16.
The controlled reductive carbonylation under 1 atm. of CO of [Ir(cyclooctene)2(μ-Cl)]2, supported on a silica surface added with an alkali carbonate such as Na2CO3 or K2CO3, can be directed toward the formation of [Ir4(CO)12], K2[Ir6(CO)15] or K2[Ir8(CO)22] by controlling (i) the nature and amount of alkali carbonate, (ii) the amount of surface water, and (iii) the temperature. [Ir4(CO)12] can also be prepared by direct controlled reductive carbonylation of IrCl3 supported on silica in the presence of well controlled amounts of Na2CO3. These efficient silica-mediated syntheses are comparable to conventional synthetic methods carried out in solution or on the MgO surface. Like in strongly basic solution or on the MgO surface, the initially formed [Ir4(CO)12], the first step of nucleation which does not require a strong basicity of the silica surface, gives in a second time sequentially [Ir8(CO)22]2? and [Ir6(CO)15]2? according to reaction conditions and basicity of the silica surface. 相似文献
17.
M. Victoria Jimnez Ana I. Ojeda-Amador Raquel Puerta-Oteo Joaquín Martínez-Sal Vincenzo Passarelli Jesús J. Prez-Torrente 《Molecules (Basel, Switzerland)》2022,27(22)
Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)2(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)2]+ and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release. High activity and selectivity to LA were achieved in an open system under low catalyst loadings using KOH as a base. The hydroxy-functionalized bis-NHC catalysts are much more active than both the carboxylate-functionalized ones and the unbridged bis-NHC iridium(I) catalyst with hydroxyalkyl-functionalized NHC ligands. In general, carbonyl complexes are more active than the related 1,5-cyclooctadiene ones. The catalyst [Ir(CO)2{(MeImCH2)2CHOH}]Br exhibits the highest productivity affording TONs to LA up to 15,000 at very low catalyst loadings. 相似文献
18.
Pt(111)表面上一氧化碳的吸附与氧化反应1)刘金尧(清华大学一碳化工国家重点实验室北京100084)XuMZaeraF(DepartmentofChemistryUniversityofCaliforniaRiversideCA92521)关键词... 相似文献
19.
20.
本文报道Co-Ru簇的合成与表征的研究。由Et4N[RuCl4(CH3CN)2]和Co2(CO)8制备了Et4N[Co3Ru(CO)12]·1/3THF, 它与等摩尔的NOBF4反应得到Co3Ru(CO)11(NO)(1)和Co2Ru(CO)11(5)。簇合物1分别与乙炔、苯基乙炔和二苯基乙炔进一步反应得到(HC≡CH)Co3Ru(CO)9(NO)(2), (PhC≡CH)Co3Ru(CO)9(NO)(3)和(PhC≡CPh)Co3Ru(CO)9(NO)(4)。在上述反应中还分离得到(HC≡CH)Co2Ru(CO)9(6), (PhC≡CH)Co2Ru(CO)9(7)和(PhC≡CPh)Co2Ru(CO)9(8)。对所得族合物1,2,3,4进行了IR, UV,^1H NMR, m.p., 元素分析和单晶X射线衍射分析等性质表征, 簇合物3的晶体属单斜晶系, pα1/n空间群, 晶胞参数为: a=1.1438(9), b=.3033(6), c=1.4345(9)nm, β=100.72(4)°, 每个晶胞中有四个分子。 相似文献