首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report results on the catalytic oxidation of carbon monoxide (CO) over clean Ir surfaces that are prepared reversibly from the same crystal in situ with different surface morphologies, from planar to nanometer-scale facets of specific crystal orientations and various sizes. Our temperature-programmed desorption (TPD) data show that both planar Ir(210) and faceted Ir(210) are very active for CO oxidation to form CO2. Preadsorbed oxygen promotes the oxidation of CO, whereas high coverages of preadsorbed CO poison the reaction by blocking the surface sites for oxygen adsorption. At low coverages of preadsorbed oxygen (< or = 0.3 ML of O), the temperature Ti for the onset of CO2 desorption decreases with increasing CO coverage. At high coverages of preadsorbed oxygen (> 0.5 ML of O), T(i) is < 330 K and is independent of CO coverage. Moreover, we find clear evidence for structure sensitivity in CO oxidation over clean planar Ir(210) versus that over clean faceted Ir(210): the CO2 desorption rate is sensitive to the surface morphological differences. However, no evidence has been found for size effects in CO oxidation over faceted Ir(210) for average facet size ranging from 5 to 14 nm. Energetically favorable binding sites for O/Ir(210) are characterized using density functional theory (DFT) calculations.  相似文献   

2.
Temperature programmed desorption (TPD) and density functional theory (DFT) are used to investigate adsorption sites and reaction of coadsorbed NO and CO on planar Ir(210) and faceted Ir(210) with tailored sizes of three‐sided nanopyramids exposing (311), (31${\bar 1}$ ) and (110) faces. Both planar and faceted Ir(210) are highly active for reduction of NO by CO with high selectivity to N2, which is accompanied by simultaneous oxidation of CO. Evidence is found for structure sensitivity in adsorption sites and reaction of coadsorbed NO and CO on faceted Ir(210) versus planar Ir(210). Strong interaction between NO and CO at high NO exposure and one‐monolayer CO pre‐coverage results in “explosive” evolution of N2 and CO2 on planar Ir(210) and size effects in reduction of NO by CO on faceted Ir(210) for average facet size ranging from 5 to 14 nm without change in facet structure.  相似文献   

3.
The adsorption and decomposition of ammonia and hydrogen have been studied on surfaces of clean planar Ir(210) and clean nanoscale-faceted Ir(210), which are prepared from the same crystal in situ. We find evidence for structure sensitivity in recombination and desorption of H2 and in thermal decomposition of NH3 on clean planar Ir(210) versus clean faceted Ir(210). Moreover, the decomposition kinetics of NH3 on faceted Ir(210) exhibit size effects on the nanometer scale, which is the first observation of size effects in surface chemistry on an unsupported monometallic catalyst with controlled and well-defined structure and size.  相似文献   

4.
It is shown that the reaction between NO and CO on Pt(100) is autocatalytic and probably involves a surface species which accelerates the reaction. Temperature-programmed desorption (TPD) of co-adsorbed NO and CO yields complete reaction, with N2 and CO2 desorbing simultaneously in sharp peaks at ≈410 K. Isothermal desorption also yields rates characteristic of chemical autocatalysis.  相似文献   

5.
As catalysis research strives toward designing structurally and functionally well-defined catalytic centers containing as few active metal atoms as possible, the importance of understanding the reactivity of small metal clusters, and in particular of systematic comparisons of reaction types and cluster sizes, has grown concomitantly. Here we report density functional theory calculations (GGA-PW91) that probe the relationship between particle size, intermediate structures, and energetics of CO and NO oxidation by molecular and atomic oxygen on Pt(x) clusters (x = 1-5 and 10). The preferred structures, charge distributions, vibrational spectra, and energetics are systematically examined for oxygen (O(2), 2O, and O), CO, CO(2), NO, and NO(2), for CO/NO co-adsorbed with O(2), 2O, and O, and for CO(2)/NO(2) co-adsorbed with O. The binding energies of oxygen, CO, NO, and of the oxidation products CO(2) and NO(2) are all markedly enhanced on Pt(x) compared to Pt(111), and they trend toward the Pt(111) levels as cluster size increases. Because of the strong interaction of both the reactants and products with the Pt(x) clusters, deep energy sinks develop on the potential energy surfaces of the respective oxidation processes, indicating worse reaction energetics than on Pt(111). Thus the smallest Pt clusters are less effective for catalyzing CO and NO oxidation in their original state than bulk Pt. Our results further suggests that oxidation by molecular O(2) is thermodynamically more favourable than by atomic O on Pt(x). Conditions and applications in which the Pt(x) clusters may be effective catalysts are discussed.  相似文献   

6.
含Cu复合氧化物对NO和CO吸附和活化的TPSR研究   总被引:2,自引:2,他引:2  
利用MS-TPD法并结合XRD、化学分析等对催化剂进行了表征,探讨了K2NiF4结构La2-x(Sr,Th)xCuO4±λ系催化剂中三个典型样品LaSrCuO4、La2CuO4和La1.7Th0.3CuO4对NO、CO及CO+NO等小分子的吸附性能和活化规律。结果表明:NO吸附量的大小与催化剂中氧空位含量有关,吸附强度和脱附峰种类与金属离子氧化态有关。CO在氧缺陷复合氧化物催化剂上的吸附是首先变为碳酸根,并在高温以CO2物种脱出.在NO和CO的共吸附过程中,有关NO的吸、脱性能与单独NO-TPD中NO的吸脱附规律相似,表明NO在NO+CO共吸附的竞争吸附过程中,优先吸附起决定作用,而受CO的影响较小.NO的吸附是NO活化分解的必要条件.  相似文献   

7.
Adsorption and reactions of NO on clean and CO-precovered Ir(111) were investigated by means of X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HR-EELS), infrared reflection absorption spectroscopy (IRAS), and temperature-programmed desorption (TPD). Two NO adsorption states, indicative of fcc-hollow sites and atop sites, were present on the Ir(111) surface at saturation coverage. NO adsorbed on hollow sites dissociated to Na and Oa at temperatures above 283 K. The dissociated Na desorbed to form N2 by recombination of Na at 574 K and by a disproportionation reaction between atop-NO and Na at 471 K. Preadsorbed CO inhibited the adsorption of NO on atop sites, whereas adsorption on hollow sites was not affected by the coexistence of CO. The adsorbed CO reacted with dissociated Oa and desorbed as CO2 at 574 K.  相似文献   

8.
Transient response and temperature-programmed desorption/reaction (TPD/TPR) methods were used to study the formation of adsorbed NO(x) from N2O and its effect during N2O decomposition to O2 and N2 over FeZSM-5 catalysts at temperatures below 653 K. The reaction proceeds via the atomic oxygen (O)(Fe) loading from N2O on extraframework active Fe(II) sites followed by its recombination/desorption as the rate-limiting step. The slow formation of surface NO(x,ads) species was observed from N2O catalyzing the N2O decomposition. This autocatalytic effect was assigned to the formation of NO(2,ads) species from NO(ads) and (O)(Fe) leading to facilitation of (O)(Fe) recombination/desorption. Mononitrosyl Fe2+(NO) and nitro (NO(2,ads)) species were found by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) in situ at 603 K when N2O was introduced into NO-containing flow passing through the catalyst. The presence of NO(x,ads) does not inhibit the surface oxygen loading from N2O at 523 K as observed by transient response. However, the reactivity of (O)(Fe) toward CO oxidation at low temperatures (<523 K) is drastically diminished. Surface NO(x) species probably block the sites necessary for CO activation, which are in the vicinity of the loaded atomic oxygen.  相似文献   

9.
La2-xSrxNiO4上氧的TPD及其氧化活性   总被引:4,自引:0,他引:4  
La2-xSrxNiO4上O2的TPD研究表明,氧的脱附性能与催化剂结构中Ni2+和Ni3+的性质及含量有关,晶格氧直接参与了CO的氧化与甲烷的氧化偶联。  相似文献   

10.
用TPD-MS、TPSR-MS及CO氧化活性测定等方法研究了Pt/Al2O3和掺杂超细ZrO2的样品的表面氧脱出-恢复性能、CO表面氧化性能及催化氧化性能.结果表明,在Pt/Al2O3中掺杂ZrO2后,样品表面上的氧物种脱出和氧化恢复性能明显提高,脱氧量也明显增大;并发现在CO-TPSR过程中程脱物CO2的脱附量大小及峰顶温度次序与对CO的催化氧化活性也有一致的关系  相似文献   

11.
Hydrazine decomposition chemistry was probed over a temperature range from 100 to 800 K for a series of model catalysts prepared by mass-selected Ir(n)(+) deposition on planar Al(2)O(3)/NiAl(110). Two sets of experiments are reported. Temperature-programmed desorption (TPD) was used to study hydrazine desorption and decomposition on Al(2)O(3)/NiAl(110) and on a model catalyst prepared by deposition of Ir(+) on Al(2)O(3)/NiAl(110) at a density large enough (5 x 10(14) cm(-2)) that formation of a distribution of small Ir(n) clusters on the surface is expected. This model catalyst was found to have hydrazine decomposition properties qualitatively similar to those observed on single-crystal Ir and polycrystalline Rh. This catalyst was also studied by X-ray photoelectron spectroscopy (XPS), to probe TPD-induced changes in the samples. A substantial decrease in the Ir XPS intensity suggests that considerable sintering takes place when the samples are heated to 800 K. In addition, a significant fraction of the nitrogen contained in the hydrazine is converted to an aluminum nitride (or mixed Al(x)O(y)N(z)) compound. Continuous flow experiments were used to probe relative reactivity at 300 and 400 K of samples prepared by depositing differently sized Ir(n)(+) clusters. At 300 K, samples prepared with preformed Ir(n)(+) (n = 5, 7, 10) are about twice as active, per Ir atom, as samples prepared with Ir(+) deposition, and there is a weaker trend to higher activity with increasing cluster size. At 400 K the trends are similar, but weaker, suggesting that thermal modification of the samples is already significant.  相似文献   

12.
The aim of this work is to study the effect of Sr substitution on the redox properties and catalytic ac- tivity of La2-xSrxNiO4(x=0.0-1.2)for NO decomposition.Results suggest that the x=0.6 sample shows the highest activity.The characterization(TPD,TPR,etc.)of samples indicates that the x=0.6 sample possesses suitable abilities in both oxidation and reduction,which facilitates the proceeding of oxygen desorption and NO adsorption.At temperature below 700℃,the oxygen desorption is difficult, and is the rate-determining step of NO decomposition.With the increase of reaction temperature(T> 700℃),the oxygen desorption is favorable and,the active adsorption of NO on the active site(NO Vo Ni2 →NO~--Ni3 )turns out to be the rate-determining step.The existence of oxygen vacancy is the prerequisite condition for NO decomposition,but its quantity does not relate much to the activity.  相似文献   

13.
We have investigated surface CO oxidation on "inverse catalysts" composed of SnO(x) nanostructures supported on Pt(111) using X-ray photoelectron spectroscopy (XPS), low-energy ion scattering spectroscopy (LEISS) and temperature-programmed desorption (TPD). Nanostructures of SnO(x) were prepared by depositing Sn on Pt(111) pre-covered by NO(2) layers at low temperatures. XPS data show that the SnO(x) nanoparticles are highly reduced with Sn(II)O being the dominant oxide species, but the relative concentration of Sn(II) in the SnO(x) nanoparticles decreases with increasing Sn coverage. We find that the most active SnO(x)/Pt(111) surface for CO oxidation has smallest SnO(x) coverage. Increasing the surface coverage of SnO(x) reduces CO oxidation activity and eventually suppresses it altogether. The study suggests that reduced Sn(II)O, rather than Sn(IV)O(2), is responsible for surface CO oxidation. The occurrence of a non-CO oxidation reaction path involving reduced Sn(II)O species at higher SnO(x) coverages accounts for the decreased CO oxidation activity. From these results, we conclude that the efficacy of CO oxidation is strongly dependent on the availability of reduced tin oxide sites at the Pt-SnO(x) interface, as well as unique chemical properties of the SnO(x) nanoparticles.  相似文献   

14.
Adsorption and reactions of NO over the clean and CO-preadsorbed Ir(111) and Rh(111) surfaces were investigated using infrared reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). Two NO adsorption states, indicative of hollow and atop sites, were present on Ir(111). Only NO adsorbed on hollow sites dissociated to Na and Oa. The dissociated Na desorbed as N2 by recombination of Na and by a disproportionation reaction between atop-NO and Na. Preadsorbed CO inhibited atop-NO, whereas hollow-NO was not affected. Adsorbed CO reacted with Oa and desorbed as CO2. NO adsorbed on the fcc-hollow, atop, and hcp-hollow sites in that order over Rh(111). The hcp-NO was inhibited by preadsorbed atop-CO, and fcc-NO and atop-NO were inhibited by CO preadsorbed on each type of the sites, indicating that NO and CO competitively adsorbed on Rh(111). From the Rh(111) surface-coadsorbed NO and CO, N2 was produced by fcc-NO dissociation, and CO2 was formed by reaction of adsorbed CO with Oa from dissociated fcc-NO.  相似文献   

15.
用TPD和IR方法研究了CH_3NO_2在典型固体酸SiO_2-Al_2O_3和固体碱MgO催化剂上的吸附分解。结果表明,在SiO_2-Al_2O_3表面CH_3NO_2吸附转化为表面甲酰胺物种,后者在高温下分解为CO_2和NH_3。在MgO表面CH_3NO_2吸附形成多种表面化学物种,它们在升温过程中脱附,并通过表面亚硝基甲烷物种分解为NO、C_2H_4、C_2H_6和N_2O.讨论了CH_3NO_2分解过程中表面酸、碱中心的作用。  相似文献   

16.
NO在氧预吸附Ir(100)表面吸附和解离的第一性原理研究   总被引:1,自引:0,他引:1  
采用第一性原理密度泛函理论和周期性平板模型研究了NO在O预吸附Ir(100)表面的吸附和解离, 并考察了预吸附的O对可能产物N2, N2O和NO2的选择性的影响. 优化得到反应过程中初态、 过渡态和末态的吸附构型, 并获得反应的势能面信息. 计算结果表明, NO在O预吸附表面最稳定的吸附位是桥位, 其次是顶位. 桥位和顶位的NO在表面存在两条解离通道, 即直接解离通道和由桥位和顶位扩散到平行空位, 继而发生N-O键断裂生成N原子和O原子的解离通道. 此分离机理与洁净表面上NO解离机理相同, 但后一种解离方式优于前一种, 是NO在表面上解离的主要通道. 预吸附的O原子在不同程度上抑制了NO的解离, 导致桥位和顶位NO解离互相竞争. 在O预吸附Ir(100)表面, N2气是唯一的产物, 不会有副产物N2O和NO2的生成, 与实验结果一致. 预吸附的O在N/O低覆盖度下几乎不影响N2气的生成, 但在较高覆盖度下则促进了N2气的生成.  相似文献   

17.
采用流动态原位IR ,TPD及XPS技术研究了NO及SO2 在Co3 O4 /Al2 O3 金属氧化物催化剂表面上的吸附及脱附行为 ,并与该催化剂上模拟烟道气中NO的选择性催化氧化活性相关联 ,考察了SO2 对该反应过程的影响及作用机理 .  相似文献   

18.
We have investigated the effect of co-absorbed CO and reaction temperature on the angular distribution of N(2) desorption by N(2)O decomposition under the steady state of N(2)O-CO reaction on Rh(110). Spatial distributions of desorbing product N(2) emission have been measured at various surface temperatures and CO coverages. The decomposed N(2) collimates at 48°-61° off normal in the parallel plane to [001] and [110] directions, indicating that adsorbed N(2)O just before the decomposition is oriented along the [001] direction. Although the inclined and collimated N(2) desorption is always observed at any steady-state CO coverage and reaction temperature, the shape of the collimated N(2) distribution varied dependent on the co-adsorbed CO coverage. The distribution becomes sharp and shifts toward the surface normal direction with increasing CO coverage. These effects of adsorbed CO on the angular distribution of N(2) are interpreted by the collision of desorbed N(2) with co-adsorbed CO.  相似文献   

19.
We investigated the electrochemical oxidation and reduction processes on ultrahigh vacuum prepared, smooth and structurally well-characterized Ru(0001) electrodes in a CO-saturated and, for comparison, in a CO-free flowing perchloric acid electrolyte by electrochemical methods and by comparison with previous structural data. Structure and reactivity of the adsorbed layers are largely governed by a critical potential of E = 0.57 V, which determines the onset of O(ad) formation on the CO(ad) saturated surface in the positive-going scan and of O(ad) reduction in the negative-going scan. O(ad) formation proceeds via nucleation and 2D growth of high-coverage O(ad) islands in a surrounding CO(ad) phase, and it is connected with CO(ad) oxidation at the interface between the two phases. In the negative-going scan, mixed (CO(ad) + O(ad)) phases, most likely a (2 × 2)-(CO + 2O) and a (2×2)-(2CO + O), are proposed to form at E < 0.57 V by reduction of the O(ad)-rich islands and CO adsorption into the resulting lower-density O(ad) structures. CO bulk oxidation rates in the potential range E > 0.57 V are low, but significantly higher than those observed during oxidation of pre-adsorbed CO in the CO-free electrolyte. We relate this to high local CO(ad) coverages due to CO adsorption in the CO-saturated electrolyte, which lowers the CO adsorption energy and thus the barrier for CO(ad) oxidation during CO bulk oxidation.  相似文献   

20.
利用CO与NO作为双探针分子和TP-IR动态方法研究了Rh+Co/Al2O3催化剂上的吸附中心类型, CO吸附态的动态行为以及CO歧化反应。结果表明在Rh+Co/Al2O3上存在大量的孪生CO吸附中心和少量的线式CO吸附中心以及Co上的NO吸附中心。在TPD(真空中)动态过程中, 孪生CO谱带强度逐渐减弱并在325℃完全脱除。明显低于Rh4/Al2O3上孪生CO谱带的脱附温度, 表明Co的加入减弱了孪生中心对CO的吸附强度。在TP(CO中)动态过程中, 吸附的CO谱带上250℃以上才发生强度减小直至消失的行为表明CO歧化在250℃以上才发生。并且孪生中心上的歧化速率高于线式中心。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号