首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heteroatom-centered free radicals are able to transform cis unsaturated fatty acids to the thermodynamically more stable, but unnatural, trans configuration. The "geometrical" radical stress can be estimated in biological samples using trans fatty acid isomers as lipid markers. Regioselectivity is an important feature of the "geometrical" radical stress, because the supramolecular organization of the polyunsaturated fatty acid moieties of phospholipids can lead to preferential monotrans isomer formation. The regioisomer recognition is a crucial step, which is helped by appropriate molecular libraries available through radical-based synthetic methodologies. Cholesteryl linoleate and arachidonate esters are interesting targets for their biochemical connection with membrane phospholipid turnover and their well-known roles in cardiovascular health. The synthesis of monotrans isomers of PUFA cholesteryl esters was achieved by a thiyl radical-catalyzed cis-trans isomerization. Valuable NMR, IR, and Raman spectroscopic data have been collected for promising application in metabolomics and lipidomics. The identification of monotrans cholesteryl ester isomers was carried out in human plasma by GC, Raman, and IR analyses, demonstrating for the first time the presence of specific regiosiomers connected to free radical stress. This work helps to highlight the chemical biology approach for the access to molecular libraries applicable to biomarker development, and the cis-trans isomerization as a relevant process to be integrated in the puzzling scenario of free radical-mediated lipid modifications.  相似文献   

2.
Owing to importance in combustion processes, O2-loss and 1, 6-H-shift in cis-2-butene-1-peroxy radical have been investigated. Energies for these processes and the barrier height of the latter are computed using the diffusion Monte Carlo (DMC) method. The DMC energy for the 1, 6-H-shift was determined to be 4.56 ± 0.19 kcal/mol with barrier height of 26.79 ± 0.20 kcal/mol. The energy for O2-loss was found to be 14.93 ± 0.24 kcal/mol. Quantitative differences between the findings of the present study and previous CBS-QB3 results indicate a discrepancy between high-level methods for the resonance-stabilized radicals. Further study is needed to identify the origin of these differences.  相似文献   

3.
Trans unsaturated fatty acids in humans may be originated by two different contributions. The exogenous track is due to dietary supplementation of trans fats and the endogenous path deals with free-radical-catalyzed cis-trans isomerization of fatty acids. Arachidonic acid residue (5c,8c,11c,14c-20:4), which has only two out of the four double bonds deriving from the diet, was used to differentiate the two paths and to assess the importance of a radical reaction. A detailed study on the formation of trans phospholipids catalyzed by the HOCH2CH2S* radical was carried out on L-alpha-phosphatidylcholine from egg lecithin and 1-stearoyl-2-arachidonoyl-L-alpha-phosphatidylcholine (SAPC) in homogeneous solution or in large unilamellar vesicles (LUVET). Thiyl radicals were generated from the corresponding thiol by either gamma-irradiation or UV photolysis, and the reaction course was followed by GC, Ag/TLC, and 13C NMR analyses. The isomerization was found to be independent of cis double bond location (random process) in i-PrOH solution. In the case of vesicles, the supramolecular organization of lipids produced a dramatic change of the isomerization outcome: (i) in egg lecithin, the reactivity of arachidonate moieties is higher than that of oleate and linoleate residues, (ii) in the linoleate residues of egg lecithin, the 9t,12c-18:2 isomer prevailed on the 9c,12t-18:2 isomer (3:1 ratio), and (iii) a regioselective isomerization of SAPC arachidonate residues occurred in the 5 and 8 positions. This effect of "positional preference" indicates that thiyl radicals entering the hydrophobic region of the membrane bilayer start to isomerize polyunsaturated fatty acid residues having the double bonds nearest to the membrane surfaces. We propose that arachidonic acid and its trans isomers can function as biomarkers in membranes for distinguishing the two trans fatty acid-forming pathways.  相似文献   

4.
Trapp O 《Electrophoresis》2005,26(2):487-493
Dynamic capillary electrophoresis (DCE) and direct calculation of the rate constants of isomerization has been applied to determine the cis-trans isomerization barriers of the angiotensin-converting enzyme inhibitor captopril. The separation of the rotational cis-trans isomeric drug has been performed in an aqueous 50 mM borate buffer at pH 9.3. Interconversion profiles featuring plateau formation, peak-broadening, and peak coalescence were observed. To determine the rate constants of the forward and backward reaction (k(cis-->trans) and k(trans-->cis)) of the isomerization process in dynamic capillary electrophoresis, a novel straightforward calculation method using the experimental parameters plateau height, h(plateau), peak width at half height w(h), the total migration times of the cis-trans isomers t(R) and the electroosmotic break-through time t(0) as well as the peak ratio of the cis-trans isomers is presented for the first time. From temperature dependent measurements the rate constants k(cis-->trans) and k(trans-->cis) and the kinetic activation parameters DeltaG( not equal), DeltaH( not equal), and DeltaS( not equal) of the cis-trans isomerization of captopril were obtained. From the activation parameters the isomerization barriers of captopril at 37 degrees C under basic conditions were calculated to be DeltaG( not equal) (cis-->trans) = 90.3 kJ.mol(-1)and DeltaG( not equal) (trans-->cis) = 90.0 kJ.mol(-1*).  相似文献   

5.
Disproportionation–combination rate ratios have been measured for a number of pairs of thermalized radicals (298°K) generated by thermalization of chemically activated cycloalkyl radicals, their ring-opened products, and ethyl radicals. These ratios are reported and briefly discussed. The rate of isomerization of the chemically activated pent-2-en-5-yl radical via H-atom transfer to the allylic pent-1-en-3-yl radical is also given.  相似文献   

6.
Ring closure reactions were investigated in a combined computational (density functional theory) and experimental study, to uncover the origin of diastereoselection in 5-exo-trig cyclizations of methyl and tert-butyl-substituted 4-penten-1-oxyl radicals. Selectivity data were calculated on the basis of transition state theory, the Curtin-Hammett principle, and Maxwell-Boltzmann statistics, to provide an excellent correlation between computed and experimental cis-trans ratios. The data show that the 2,3-trans-, 2,4-cis-, and 2,5-trans-diastereoselection exerted by CH3 and C(CH3)3 groups increases along substituent positions 1 < 2 < 3, with the effect of tert-butyl substituents being more pronounced. Theory states that the favored mode of cyclization proceeds via intermediates that are characterized by an offset of atoms C2 and C3 into opposite directions from the plane of O1 (radical center)/C5 (olefinic C)/C4 (allylic C). This arrangement allows alkyl substituents and the =CH2 entity to adopt positions that are associated with the fewest and least severe synclinal and synperiplanar interactions. A transition structure notation is proposed based on conformational characteristics of the heterocycle, the intermediates structurally resemble the closest, i.e. tetrahydrofuran. The new transition state model serves as an alternative to cyclohexane-based guidelines and adequately addresses hitherto unsettled instances properly, such as the lack in diastereoselectivity observed in the 1-phenyl-4-penten-1 -oxyl radical 5-exo-trig ring closure.  相似文献   

7.
《Comptes Rendus Chimie》2002,5(5):387-394
The cis- and trans-(η5-C5H4Me)Mo(CO)2(P(OiPr)3)I complexes undergo a bi-directional thermal ligand isomerization reaction to yield an equilibrium mixture of isomers (30/70 cis/trans ratio, 90 °C, < 80 min) in the solid state. The activation energy barrier for the cis-trans isomerization reaction (80–100 °C) was found to be 68 ± 10 kJ mol–1. In benzene (reflux, 2 h) this isomer ratio was found to be 70:30 cis/trans. DSC and powder XRD studies have revealed reactions that occur in the solid state entailing decomposition and isomerization. DSC experiments did not reveal the presence of the cis–trans isomerization reaction.  相似文献   

8.
A variety of 1,1,4,4-tetraal kynylbutatrienes and 1,4-dialkynylbutatrienes was synthezized by dimerization of the corresponding gem-dibromoolefins. Both (1)H and (13)C NMR spectroscopy indicated that the di- and tetraalkynylated butatrienes are formed as a mixture of cis and trans isomers. Variable temperature NMR studies evidenced a facile cis-trans isomerization, thus preventing the separation of these isomers by gravity or high-performance liquid chromatography (HPLC). For 1,1,4,4-tetraalkynylbutatrienes, the activation barrier deltaG( not equal ) was measured by magnetization transfer to be around 20 kcal mol(-1), in the range of the barrier for internal rotation about a peptide bond. Unlike the tetraalkynylated [3]cumulenes, 1,4-dialkynylbutatrienes are more difficult to isomerize and could, in one case, be obtained isomerically pure. Based on experimental data, the rotational barrier DeltaG( not equal ) for 1,4-dialkynylbutatrienes is estimated to be around 25 kcal mol(-1). The hypothesis of a stabilizing effect of the four alkynyl substituents on the proposed but-2-yne-1,4-diyl singlet diradical transition state of this cis-trans isomerization is further supported by a computational study.  相似文献   

9.
A kinetic study of the dodecanethiol-catalyzed cis/trans isomerization of methyl oleate (cis-2) without added initiator was performed by focusing on the initiation of the radical chain reaction. The reaction orders of the rate of isomerization were 2 and 0.5 for 1 and cis-2, respectively, and an overall kinetic isotope effect k(H)/k(D) of 2.8 was found. The initiation was shown to be a complex reaction. The electron-donor/-acceptor (EDA) complex of dodecanethiol (1) and cis-2 formed in a pre-equilibrium reacts with thiol 1 to give a stearyl and a sulfuranyl radical through molecule-assisted homolysis (MAH) of the sulfur-hydrogen bond. Fragmentation of the latter gives the thiyl radical, which catalyzes the cis/trans isomerization. A computational study of the EDA complex, MAH reaction, and the sulfuranyl radical calculated that the activation energy of the isomerization was in good agreement with the experimental result of E(A)=82?kJ M(-1). Overall, the results may explain that the thermal generation of thiyl radicals without any initiator is responsible for many well-known thermally initiated addition reactions of thiol compounds to alkenes and their respective polymerizations and for the low shelf-life stability of cis-unsaturated thiol compounds and of mixtures of alkenes and thiol compounds.  相似文献   

10.
Dynamic capillary electrophoresis (DCE) and computer simulation of the elution profiles with the stochastic model has been applied to determine the isomerization barriers of the angiotensin converting enzyme inhibitor enalaprilat. The separation of the rotational cis-trans isomeric drug has been performed in an aqueous 20 mM borate buffer at pH 9.3. Interconversion profiles featuring plateau formation and peak broadening were observed. To evaluate the rate constants k(cis-->trans) and k(trans-->cis) of the cis-trans isomerization from the experimental electropherograms obtained by dynamic capillary electrophoresis, elution profiles were analyzed by a simulation with iterative convergence to the experimental data using the ChromWin software which requires the total migration times of the individual isomers t(R), the electroosmotic break-through time t(0), the plateau height h(plateau), the peak widths at half height of the individual isomers w(h), as well as the peak ratio of the isomers as experimental data input. From temperature-dependent measurements between 0 degrees and 15 degrees C the thermodynamic parameters Delta G, Delta H and Delta S, the rate constants k(cis-->trans) and k(trans-->cis) and the kinetic activation parameters Delta G*, Delta H*, and Delta S* of the cis-trans isomerization of enalaprilat were obtained. From the activation parameters the isomerization barriers at 37 degrees C were calculated to be Delta G* (trans-->cis) = 87.2 kJ.mol(-1) and Delta G*(cis-->trans) = 91.9 kJ.mol(-1).  相似文献   

11.
As versatile synthetic intermediates for new photoswitchable molecules with a tetramethylindanylindane (stiff-stilbene) core, the cis and trans isomers of 5,16-dibromo-2,2,13',13'-tetramethylindanylindanes 2 were synthesized by the Barton-Kellogg coupling. The bromine atoms of trans-2 could be readily replaced with alkyl (sp3), aryl (sp2), and ethynyl (sp) groups. The cis isomers of the parent tetramethylindanylindane 1 and its bromo derivative 2 were isolated, and their structural and photophysical properties were examined for the first time. Clean and efficient trans-cis and cis-trans photochemical isomerization processes were observed in 1.  相似文献   

12.
The reactions of hydrogen atoms with enkephalins and related peptides have been investigated by radiolytic methods in aqueous solutions and lipid vesicle suspensions. Pulse radiolysis experiments indicate that methionine residue (Met) is the main target. In Met-enkephalin (Tyr-Gly-Gly-Phe-Met) the attack of the hydrogen atom occurs to about 50 % on Met with formation of methanethiyl radical. The remaining percentage is divided roughly evenly between Tyr and Phe. With Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) the site of attack is limited to Tyr and Phe. Using a peptide-liposome (that is, 1-palmitoyl-2-oleoyl phosphatidylcholine vesicles) model, the cis-trans isomerization of phospholipids could be detected due to the catalytic action of thiyl radicals. The radiation chemical yields of the H(.) and, consequently of CH(3)S(.) radical, was modulated by the experimental conditions and the nature of peptide. Large amounts of trans lipids observed in phosphate buffer vesicle suspensions indicated the efficient role of double-bond isomerization as marker of Met-containing peptide damage.  相似文献   

13.
Cis-trans isomerization of [9]-annulenanion(1) and its 2-fluoro-,2-chloro-and 2-bromo-derivatives(2,3 and 4,respectively) were investigated at the HF/6-31G* and B3LYP/6-311++G** levels of theory.Cis,cis,cis,cis structures appear more stable than their corresponding cis,cis,cis,trans-isomers.The relative height of energy barriers for cis-trans isomerization is:2cis > 1cis > 3cis > 4cis.This trend for the reverse trans-cis isomerization follows the electronegativity of the substituent at C-2(2trans > 3trans > 4trans > 1trans).  相似文献   

14.
This work investigates the unimolecular dissociation of the methoxycarbonyl, CH(3)OCO, radical. Photolysis of methyl chloroformate at 193 nm produces nascent CH(3)OCO radicals with a distribution of internal energies, determined by the velocities of the momentum-matched Cl atoms, that spans the theoretically predicted barriers to the CH(3)O + CO and CH(3) + CO(2) product channels. Both electronic ground- and excited-state radicals undergo competitive dissociation to both product channels. The experimental product branching to CH(3) + CO(2) from the ground-state radical, about 70%, is orders of magnitude larger than Rice-Ramsperger-Kassel-Marcus (RRKM)-predicted branching, suggesting that previously calculated barriers to the CH(3)OCO --> CH(3) + CO(2) reaction are dramatically in error. Our electronic structure calculations reveal that the cis conformer of the transition state leading to the CH(3) + CO(2) product channel has a much lower barrier than the trans transition state. RRKM calculations using this cis transition state give product branching in agreement with the experimental branching. The data also suggest that our experiments produce a low-lying excited state of the CH(3)OCO radical and give an upper limit to its adiabatic excitation energy of 55 kcal/mol.  相似文献   

15.
This study investigates two features of interest in recent work on the photolytic production of the methoxy carbonyl radical and its subsequent unimolecular dissociation channels. Earlier studies used methyl chloroformate as a photolytic precursor for the CH3OCO, methoxy carbonyl (or methoxy formyl) radical, which is an intermediate in many reactions that are relevant to combustion and atmospheric chemistry. That work evidenced two competing C-Cl bond fission channels, tentatively assigning them as producing ground- and excited-state methoxy carbonyl radicals. In this study, we measure the photofragment angular distributions for each C-Cl bond fission channel and the spin-orbit state of the Cl atoms produced. The data shows bond fission leading to the production of ground-state methoxy carbonyl radicals with a high kinetic energy release and an angular distribution characterized by an anisotropy parameter, beta, of between 0.37 and 0.64. The bond fission that leads to the production of excited-state radicals, with a low kinetic energy release, has an angular distribution best described by a negative anisotropy parameter. The very different angular distributions suggest that two different excited states of methyl chloroformate lead to the formation of ground- and excited-state methoxy carbonyl products. Moreover, with these measurements we were able to refine the product branching fractions to 82% of the C-Cl bond fission resulting in ground-state radicals and 18% resulting in excited-state radicals. The maximum kinetic energy release of 12 kcal/mol measured for the channel producing excited-state radicals suggests that the adiabatic excitation energy of the radical is less than or equal to 55 kcal/mol, which is lower than the 67.8 kcal/mol calculated by UCCSD(T) methods in this study. The low-lying excited states of methylchloroformate are also considered here to understand the observed angular distributions. Finally, the mechanism for the unimolecular dissociation of the methoxy carbonyl radical to CH3 + CO2, which can occur through a transition state with either cis or, with a much higher barrier, trans geometry, was investigated with natural bond orbital computations. The results suggest donation of electron density from the nonbonding C radical orbital to the sigma* orbital of the breaking C-O bond accounts for the additional stability of the cis transition state.  相似文献   

16.
Schoetz G  Trapp O  Schurig V 《Electrophoresis》2001,22(12):2409-2415
Dynamic capillary electrophoresis (DCE) and computer simulation of the elution profiles with the theoretical plate and the stochastic model has been applied to determine the isomerization barriers of the three dipeptides L-alanyl-L-proline, L-leucyl-L-proline, and L-phenylalanyl-L-proline. The separation of the rotational cis-trans isomers has been performed in an aqueous 70 mM borate buffer at pH 9.5. Interconversion profiles featuring plateau formation and peak broadening were observed. To determine the rate constants k1 and k(-1) of the cis-trans isomerization in dynamic capillary electrophoresis, equations have been derived for the theoretical plate model and stochastic model. The electropherograms were simulated with the ChromWin software which uses the experimental data plateau height h(plateau), peak width at half height Wh, the total migration times of the cis-trans isomers tR and the electroosmotic break-through time t0 as well as the peak ratio [cis]/[trans]. From temperature-dependent measurements, the rate constants k1 and k(-1) and the kinetic activation parameters deltaG#, deltaH# and deltaS# of the cis-trans isomerization of the three dipeptides were obtained.  相似文献   

17.
Organic molecules possessing intramolecular charge-transfer properties (D-pi-A type molecules) are of key interest particularly in the development of new optoelectronic materials as well as photoinduced magnetism. One such class of D-pi-A molecules that is of particular interest contains photoswitchable intramolecular charge-transfer states via a photoisomerizable pi-system linking the donor and acceptor groups. Here we report the photophysical and electronic properties of the trans to cis isomerization of 1-(pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene ligand (mepepy) in aqueous solution using photoacoustic calorimetry (PAC) and theoretical methods. Density functional theory (DFT) calculations demonstrate a global energy difference between cis and trans isomers of mepepy to be 8 kcal mol(-1), while a slightly lower energy is observed between the local minima for the trans and cis isomers (7 kcal mol(-1)). Interestingly, the trans isomer appears to exhibit two ground-state minima separated by an energy barrier of approximately 9 kcal mol(-1). Results from the PAC studies indicate that the trans to cis isomerization results in a negligible volume change (0.9 +/- 0.4 mL mol(-1)) and an enthalpy change of 18 +/- 3 kcal mol(-1). The fact that the acoustic waves associated with the trans to cis transition of mepepy overlap in frequency with those of a calorimetric reference implies that the conformational transition occurs faster than the approximately 50 ns response time of the acoustic detector. Comparison of the experimental results with theoretical studies provide evidence for a mechanism in which the trans to cis isomerization of mepepy results in the loss of a hydrogen bond between a water molecule and the pyridine ring of mepepy.  相似文献   

18.
A couple of radical carbonylations of gem-dihalocyclopropanes 1 using CO and Bu3SnH (formylation) or Bu3Sn(CH2CH=CH2) (allylacylation) successfully proceeded to give trans and cis adducts (2 and 3) with good to excellent stereoselectivity (trans/cis = >99/1-75/25 or 17/83-1/99). The formylation of 2,3-cis-disubstituted 1,1-dihalocyclopropanes enhanced trans selectivity (trans/cis = >99/1-95/5), whereas both 2,3-cis-disubstituted and 2-monosubstituted 1,1-dihalocyclopropanes underwent allylacylation with nearly complete trans selectivity (trans/cis = >99/1). Inherently less reactive gem-dichloro- and bromochlorocyclopropanes than gem-dibromocyclopropanes served as favorable substrates. [reaction: see text].  相似文献   

19.
The ability of the DNA duplex to behave as an efficient organized medium for trans-cis photoisomerization has been explored. The presence of DNA affected isomerization in a variety of ways depending on the aryl moiety properties of the ligand and its DNA-binding mode. Contrary to intercalating ligands, 9-[2-(N-methylpyridinium-4-yl)vinyl]phenanthrene (2) and 9-[2-(N-methylpyridinium-4-yl)vinyl]anthracene (3), which gave only cis and trans isomers, the additional products--cyclobutane photodimers--were detected for 2-[2-(N-methylpyridinium-4-yl)vinyl]naphthalene (1), which binds cooperatively to the minor groove of DNA. Photostationary states (pss) for all ligands were seriously affected by the presence of DNA. A trans isomer-rich pss and restriction of trans --> cis process, observed for ligands 1 and 2, were explained in terms of a different binding affinity of DNA toward particular isomers. On the contrary, 9-anthryl derivative 3 isomerized against the isomer-binding preferences, showing cis isomer-rich pss and enhanced quantum yield of isomerization. The unique behavior of ligand 3-DNA complex was attributed to different isomerization mechanism that consists in quantum chain isomerization from an excited singlet state possessing a charge transfer character. This is the first example of ligand, which undergoes DNA-mediated cis-trans isomerization in the opposite direction than expected from DNA-binding preferences. The analysis of pss data based on two alternative pathways of photoisomerization showed that investigated ligands follow the model that allows isomerization of both free and DNA-bound ligands.  相似文献   

20.
Quadruply bonded dimolybdenum(II) complexes with NP-R (2-(2-R)-1,8-naphthyridine; R = thiazolyl (NP-tz), furyl (NP-fu), thienyl (NP-th)) and 2,3-dimethyl-1,8-naphthyridine (NP-Me 2) have been synthesized by reactions of cis-[Mo2(OAc)2(CH3CN)6][BF4]2 with the corresponding ligands. The products cis-[Mo2(NP-tz)2(OAc)2][BF4]2 (1), trans-[Mo2(NP-fu)2(OAc)2][BF4]2 (2), trans-[Mo2(NP-th)2(OAc)2][BF4]2 (3), and trans-[Mo2(NP-Me2)2(OAc)2][BF4]2 (4) were isolated and characterized. The NP-R ligands with stronger R = pyridyl and thiazolyl donors result in cis isomers whereas the weaker furyl and thienyl appendages lead to compounds having a trans orientation of the ligands. The use of NP-Me2 leads to a trans structure with a tetrafluoroborate anion occupying one of the axial sites. Complete replacement of two acetate groups by acetonitrile in 1 and 2 resulted in the cis isomers [Mo2(NP-tz)2(CH3CN)4][OTf]4 (5) and [Mo2(NP-fu)2(CH3CN)4][OTf]4 (6) respectively. The combination of one acetate and two acetonitriles as ancillary ligands, however, yields trans-[Mo2(NP-tz)2(OAc)(CH3CN)2][BF4]3 (7) in the solid state as determined by X-ray crystallography. (1)H NMR spectra of the products are diagnostic of the cis and trans dispositions of the ligands. Solution studies reveal that the ligand arrangements observed in the solid state are mostly retained in the acetonitrile medium. The only exception is 7, for which a mixture of cis and trans isomers are detected on the NMR time scale. The isolation of trans compounds 2- 4 from the cis precursor [Mo2(OAc)2(CH3CN)6][BF4]2 indicates that an isomerization process occurs during the reactions. The mechanism involving acetate migration through axial coordination has been invoked to rationalize the product formation. Compounds 1- 7 were structurally characterized by single-crystal X-ray methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号