首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
气体分子对甲烷水合物稳定性的影响   总被引:1,自引:0,他引:1  
通过B3LYP方法, 在6-31G(d,p)水平下, 分别优化了结构I型甲烷水合物十二面体和十四面体晶穴结构. 结果表明, CH4分子使晶穴的相互作用能降低, 增强了晶穴的稳定性. 计算了晶穴中甲烷分子C—H键的对称伸缩振动频率, 计算结果与实验值相符合. 研究发现CH4分子影响晶穴中氧原子的电荷分布, 从而增强了氢键的稳定性. 通过分子动力学方法研究水合物晶胞中气体分子的占有率对水合物稳定性的影响, 进一步说明气体分子对水合物晶穴稳定性的重要作用.  相似文献   

2.
Small hydrocarbon complexes (X@cage) incorporating cage-centered endohedral atoms and ions (X = H(+), H, He, Ne, Ar, Li(0,+), Be(0,+,2+), Na(0,+), Mg(0,+,2+)) have been studied at the B3LYP/6-31G(d) hybrid HF/DFT level of theory. No tetrahedrane (C(4)H(4), T(d)()) endohedral complexes are minima, not even with the very small hydrogen atom or beryllium dication. Cubane (C(8)H(8), O(h)()) and bicyclo[2.2.2]octane (C(8)H(14), D(3)(h)()) minima are limited to encapsulating species smaller than Ne and Na(+). Despite its intermediate size, adamantane (C(10)H(16), T(d)()) can enclose a wide variety of endohedral atoms and ions including H, He, Ne, Li(0,+), Be(0,+,2+), Na(0,+), and Mg(2+). In contrast, the truncated tetrahedrane (C(12)H(12), T(d)()) encapsulates fewer species, while the D(4)(d)() symmetric C(16)H(16) hydrocarbon cage (see Table of Contents graphic) encapsulates all but the larger Be, Mg, and Mg(+) species. The host cages have more compact geometries when metal atoms, rather than cations, are inside. This is due to electron donation from the endohedral metals into C-C bonding and C-H antibonding cage molecular orbitals. The relative stabilities of endohedral minima are evaluated by comparing their energies (E(endo)) to the sum of their isolated components (E(inc) = E(endo) - E(cage) - E(x)) and to their exohedral isomer energies (E(isom) = E(endo) - E(exo)). Although exohedral binding is preferred to endohedral encapsulation without exception (i.e., E(isom) is always exothermic), Be(2+)@C(10)H(16) (T(d)(); -235.5 kcal/mol), Li(+)@C(12)H(12) (T(d)(); 50.2 kcal/mol), Be(2+)@C(12)H(12) (T(d)(); -181.2 kcal/mol), Mg(2+)@C(12)H(12) (T(d)(); -45.0 kcal/mol), Li(+)@C(16)H(16) (D(4)(d)(); 13.3 kcal/mol), Be(+)@C(16)H(16) (C(4)(v)(); 31.8 kcal/mol), Be(2+)@C(16)H(16) (D(4)(d)(); -239.2 kcal/mol), and Mg(2+)@C(16)H(16) (D(4)(d)(); -37.7 kcal/mol) are relatively stable as compared to experimentally known He@C(20)H(20) (I(h)()), which has an E(inc) = 37.9 kcal/mol and E(isom) = -35.4 kcal/mol. Overall, endohedral cage complexes with low parent cage strain energies, large cage internal cavity volumes, and a small, highly charged guest species are the most viable synthetic targets.  相似文献   

3.
We performed a constrained search, combined with density-functional theory optimization, of low-energy geometric structures of silicon clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80). We used fullerene cages as structural motifs to construct initial configurations of endohedral fullerene structures. For Si(39), we examined six endohedral fullerene structures using all six homolog C(34) fullerene isomers as cage motifs. We found that the Si(39) constructed based on the C(34)(C(s):2) cage motif results in a new leading candidate for the lowest-energy structure whose energy is appreciably lower than that of the previously reported leading candidate obtained based on unbiased searches (combined with tight-binding optimization). The C(34)(C(s):2) cage motif also leads to a new candidate for the lowest-energy structure of Si(40) whose energy is notably lower than that of the previously reported leading candidate with outer cage homolog to the C(34)(C(1):1). Low-lying structures of larger silicon clusters Si(50) and Si(60) are also obtained on the basis of preconstructed endohedral fullerene structures. For Si(50), Si(60), and Si(80), the obtained low-energy structures are all notably lower in energy than the lowest-energy silicon structures obtained based on an unbiased search with the empirical Stillinger-Weber potential of silicon. Additionally, we found that the binding energy per atom (or cohesive energy) increases typically >10 meV with addition of every ten Si atoms. This result may be used as an empirical criterion (or the minimal requirement) to identify low-lying silicon clusters with size larger than Si(50).  相似文献   

4.
Vertical electron detachment energies (VDEs) are calculated for a variety of (H(2)O)(n)(-) and (HF)(n)(-) isomers, using different electronic structure methodologies but focusing in particular on a comparison between second-order M?ller-Plesset perturbation theory (MP2) and coupled-cluster theory with noniterative triples, CCSD(T). For the surface-bound electrons that characterize small (H(2)O)(n)(-) clusters (n< or = 7), the correlation energy associated with the unpaired electron grows linearly as a function of the VDE but is unrelated to the number of monomers, n. In every example considered here, including strongly-bound "cavity" isomers of (H(2)O)(24)(-), the correlation energy associated with the unpaired electron is significantly smaller than that associated with typical valence electrons. As a result, the error in the MP2 detachment energy, as a fraction of the CCSD(T) value, approaches a limit of about -7% for (H(2)O)(n)(-) clusters with VDEs larger than about 0.4 eV. CCSD(T) detachment energies are bounded from below by MP2 values and from above by VDEs calculated using second-order many-body perturbation theory with molecular orbitals obtained from density functional theory. For a variety of both strongly- and weakly-bound isomers of (H(2)O)(20)(-) and (H(2)O)(24)(-), including both surface states and cavity states, these bounds afford typical error bars of +/-0.1 eV. We have found only one case where the Hartree-Fock and density functional orbitals differ qualitatively; in this case the aforementioned bounds lie 0.4 eV apart, and second-order perturbation theory may not be reliable.  相似文献   

5.
The sI methane clathrate hydrate consists of methane gas molecules encapsulated as dodecahedron (5(12)CH(4)) and tetrakaidecahedron (5(12)6(2)CH(4)) water cages. The characterization of the stability of these cages is crucial to an understanding of the mechanism of their formation. In the present work, we perform calculations using density functional theory to calculate interaction energies, free energies, and reactivity indices of these cages. The contributions from polarization functions to interaction energies is more than diffuse functions from Pople basis sets, though both functions from the correlation-consistent basis sets contribute significantly to interaction energies. The interaction energies and free energies show that the formation of the 5(12)CH(4) cage (from the 5(12) cage) is more favored compared to the 5(12)6(2)CH(4) cage (from the 5(12)6(2) cage). The pressure-dependent study shows a spontaneous formation of the 5(12)CH(4) cage at 273 K (P ≥ 77 bar) and the 5(12)6(2)CH(4) cage (P = 100 bar). The reactivity of the 5(12)CH(4) cage is similar to that of the 5(12) cage, but the 5(12)6(2)CH(4) cage is more reactive than the 5(12)6(2) cage.  相似文献   

6.
We conducted a combined anion photoelectron spectroscopy and density functional theory study on the structural evolution of copper-doped silicon clusters, CuSi(n)(-) (n = 4-18). Based on the comparison between the experiments and theoretical calculations, CuSi(12)(-) is suggested to be the smallest fully endohedral cluster. The low-lying isomers of CuSi(n)(-) with n ≥ 12 are dominated by endohedral structures, those of CuSi(n)(-) with n < 12 are dominated by exohedral structures. The most stable structure of CuSi(12)(-) is a double-chair endohedral structure with the copper atom sandwiched between two chair-style Si(6) rings or, in another word, encapsulated in a distorted Si(12) hexagonal prism cage. CuSi(14)(-) has an interesting C(3h) symmetry structure, in which the Si(14) cage is composed by three four-membered rings and six five-membered rings.  相似文献   

7.
Geometries and dissociation energies of water molecules on Al(n) (n = 2-25) clusters were investigated using density functional theory with all electron relativistic spin-polarized calculations under the generalized gradient approximation. An extensive structure search was performed to identify the low-energy conformations of Al(n)H(2)O complexes for each size. Optimal adsorption sites were assigned for low-energy isomers of the clusters. Size and site specific dependences were studied for the Al(n)H(2)O complexes in stabilities, geometries, adsorption energies, dissociation energies, Al-O bond lengths, and other characteristic quantities. The stabilities and geometries revealed that H atom in H(2)O is not inclined to bond with Al atoms. The most stable Al(n)H(2)O configurations for each size tend to correspond to the most stable bare Al(n) cluster except of Al(6) and Al(24) clusters. The HO bond lengths increase generally 0.01 ? with respect to the isolated H(2)O in all of the adsorption complexes. The dissociation energy of an isolated H(2)O into HO and H was 5.39 eV, which decreased about two-thirds to the energy range of 0.83-2.12 eV with the help of Al(n) clusters. In spite of the fluctuations, the dissociation energies of Al(n)H(2)O complexes rise with the size increasing as a whole. In addition, we also found that the bare Al(n) clusters with high vertical ionization potentials usually have high dissociation energies of H(2)O in the corresponding adsorption models. The energetically preferred spin-multiplicity of all the odd-n Al(n)H(2)O complexes is doublet, and it is singlet for all the even-n complexes with exception of Al(2)H(2)O which is triplet.  相似文献   

8.
Extensive semiempirical calculations of the hexaanions of IPR (isolated pentagon rule) and non-IPR isomers of C(68)-C(88) and IPR isomers of C(90)-C(98) followed by DFT calculations of the lowest energy structures were performed to find the carbon cages that can provide the most stable isomers of M(3)N@C(2n) clusterfullerenes (M = Sc, Y) with Y as a model for rare earth ions. DFT calculations of isomers of M(3)N@C(2n) (M = Sc, Y; 2n = 68-98) based on the most stable C(2n)(6-) cages were also performed. The lowest energy isomers found by this methodology for Sc(3)N@C(68), Sc(3)N@C(78), Sc(3)N@C(80), Y(3)N@C(78), Y(3)N@C(80), Y(3)N@C(84), Y(3)N@C(86), and Y(3)N@C(88) are those that have been shown to exist by single-crystal X-ray studies as Sc(3)N@C(2n) (2n = 68, 78, 80), Dy(3)N@C(80), and Tb(3)N@C(2n) (2n = 80, 84, 86, 88) clusterfullerenes. Reassignment of the carbon cage of Sc(2)@C(76) to the non-IPR Cs: 17490 isomer is also proposed. The stability of nitride clusterfullerenes was found to correlate well with the stability of the empty 6-fold charged cages. However, the dimensions of the cage in terms of its ability to encapsulate M(3)N clusters were also found to be an important factor, especially for the medium size cages and the large Y(3)N cluster. In some cases the most stable structures are based on the different cage isomers for Sc(3)N and Y(3)N clusters. Up to the cage size of C(84), non-IPR isomers of C(2n)(6-) and M(3)N@C(2n) were found to compete with or to be even more stable than IPR isomers. However, the number of adjacent pentagon pairs in the most stable non-IPR isomers decreases as cage size increases: the most stable M(3)N@C(2n) isomers have three such pairs for 2n = 68-72, two pairs for n = 74-80, and only one pair for n = 82, 84. For C(86) and C(88) the lowest energy IPR isomers are much more stable than any non-IPR isomer. The trends in the stability of the fullerene isomers and the cluster-cage binding energies are discussed, and general rules for stability of clusterfullerenes are established. Finally, the high yield of M(3)N@C(80) (Ih) clusterfullerenes for any metal is explained by the exceptional stability of the C(80)(6-) (Ih: 31924) cage, rationalized by the optimum distribution of the pentagons leading to the minimization of the steric strain, and structural similarities of C(80) (Ih: 31924) with the lowest energy non-IPR isomers of C(760(6-), C(78)(6-), C(82)(6-), and C(84)(6-) pointed out.  相似文献   

9.
By using tridentate ligand 4-(3-pyridinyl)-1,2,4-triazole (pytrz), cage-like complexes of {[Cu(mu2-pytrz)2](ClO4)(SO4)0.5C2H5OH.0.25 H2O}6 (1), {[Cu3(mu3-pytrz)4(mu2-Cl)2(H2O)2](ClO4)2Cl(2).2 H2O}n (2), and {[Cu3(mu3-pytrz)3(mu3-O)(H2O)3](ClO4)2.5(BF4)(1.5)5.25 H2O}n (3) have been synthesized with different copper(II) salts. Complex 1 represents the second example of a M6L12 metal-organic octahedron with an overall Th symmetry. Complex 2 is constructed from a 3(8) cage-building unit (CBU) and each CBU connects six neighboring cages to give the first 3D metal-organic framework (MOF) based on octahedral M6L12. Complex 3 is built from Cu24(pytrz)12 CBUs with the trinuclear copper clusters serving as second building units (SBUs) and decorating each corner of the M24L12 polyhedron. The Cu24(pytrz)12 building unit is linked by extra ligands to give an extended 3D framework that has the formula Cu24(pytrz)24 and possesses a CaB6 topology. The mixed anions ClO4- and BF4- in 3 are both included in the inner cavity of the cage and can be completely exchanged by ClO4- through the open windows of the cage, as evidenced by the crystal structure of the 3D MOF {[Cu3(mu3-pytrz)3(mu3-O)(H2O)3](ClO4)(4)4.5 H2O}n (4). Complex 4 can also be synthesized when employing 1 as a precursor in an extensive study of the anion-exchange reaction. This represents the first successful conversion of a discrete cage into a 3D coordination network based on a cage structure. Complex 2 remains invariable during anion-exchange reactions because uncoordinated Cl- ions are located in the comparatively small inner cavity.  相似文献   

10.
The structures and energies of hydrated oxalate clusters, C2O4(2-)(H2O)n, n = 6-12, are obtained by density functional theory (DFT) calculations and compared to SO4(2-)(H2O)n. Although the evolution of the cluster structure with size is similar to that of SO4(2-)(H2O)n, there are a number of important and distinctive futures in C2O4(2-)(H2O)n, including the separation of the two charges due to the C-C bond in C2O4(2-), the lower symmetry around C2O4(2-), and the torsion along the C-C bond, that affect both the structure and the solvation energy. The solvation dynamics for the isomers of C2O4(2-)(H2O)12 are also examined by DFT based ab initio molecular dynamics.  相似文献   

11.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

12.
A series of five Fe(III) phosphonate clusters with four different topologies is reported. The choice of coligand carboxylate plays an important role in directing the structure of the molecule. [Fe9(O)4(O2CCMe3)13(C10P)3] (1) and [Fe9(O)2(OH)(CO2Ph)10(C10P)6(H2O)2](CH3CN)7 (2; camphyl phosphonic acid, C10H17PO3H2 = C10PH2) represent two unprecedented nonanuclear Fe(III) cages having Fe9O4 and Fe9(O)2(OH) core structures, respectively. Whereas [Fe6O2(O)2(O2CCMe3)8(C10P)2 (H2O)2](CH3CN)4 (3) is a peroxo-bridged hexameric compound with an Fe6(O)2(O2) core. [Fe4(O)(O2CCMe3)4(C10P)3(Py)4](CH3CN)3 (4) and [Fe4(O)(O2CPh)4(C10P)3(Py)4](Py)3(CH3CN)2 (5; Py = pyridine) represents two tetranuclear clusters with the same Fe4O core structure.  相似文献   

13.
The ligand L(bip), containing two bidentate pyrazolyl-pyridine termini separated by a 3,3'-biphenyl spacer, has been used to prepare tetrahedral cage complexes of the form [M(4)(L(bip))(6)]X(8), in which a bridging ligand spans each of the six edges of the M(4) tetrahedron. Several new examples have been structurally characterized with a variety of metal cation and different anions in order to examine interactions between the cationic cage and various anions. Small anions such as BF(4)(-) and NO(3)(-) can occupy the central cavity where they are anchored by an array of CH···F or CH···O hydrogen-bonding interactions with the interior surface of the cage, but larger anions such as naphthyl-1-sulfonate or tetraphenylborate lie outside the cavity and interact with the external surface of the cage via CH···π interactions or CH···O hydrogen bonds. The cages with M = Co and M = Cd have been examined in detail by NMR spectroscopy. For [Co(4)(L(bip))(6)](BF(4))(8) the (1)H NMR spectrum is paramagnetically shifted over the range -85 to +110 ppm, but the spectrum has been completely assigned by correlation of measured T(1) relaxation times of each peak with Co···H distances. (19)F DOSY measurements on the anions show that at low temperature a [BF(4)](-) anion diffuses at a similar rate to the cage superstructure surrounding it, indicating that it is trapped inside the central cage cavity. Furthermore, the equilibrium step-by-step self-assembly of the cage superstructure has been elucidated by detailed modeling of spectroscopic titrations at multiple temperatures of an acetonitrile solution of L(bip) into an acetonitrile solution of Co(BF(4))(2). Six species have been identified: [Co(2)L(bip)](4+), [Co(2)(L(bip))(2)](4+), [Co(4)(L(bip))(6)](8+), [Co(4)(L(bip))(8)](8+), [Co(2)(L(bip))(5)](4+), and [Co(L(bip))(3)](2+). Overall the assembly of the cage is entropy, and not enthalpy, driven. Once assembled, the cages show remarkable kinetic inertness due to their mechanically entangled nature: scrambling of metal cations between the sites of pure Co(4) and Cd(4) cages to give a statistical mixture of Co(4), Co(3)Cd, Co(2)Cd(2), CoCd(3) and Cd(4) cages takes months in solution at room temperature.  相似文献   

14.
Large molecular clusters can be considered as intermediate states between gas and condensed phases, and information about them can help us understand condensed phases. In this paper, ab initio quantum mechanical methods have been used to examine clusters formed of methanol and water molecules. The main goal was to obtain information about the intermolecular interactions and the structure of methanol/water clusters at the molecular level. The large clusters (CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10)) containing one molecule of one component (methanol or water) and many (12, 10) molecules of the other component were considered. M?ller-Plesset perturbation theory (MP2) was used in the calculations. Several representative cluster geometries were optimized, and nearest-neighbor interaction energies were calculated for the geometries obtained in the first step. The results of the calculations were compared to the available experimental information regarding the liquid methanol/water mixtures and to the molecular dynamics and Monte Carlo simulations, and good agreement was found. For the CH(4)O...(H(2)O)(12) cluster, it was shown that the molecules of water can be subdivided into two classes: (i) H bonded to the central methanol molecule and (ii) not H bonded to the central methanol molecule. As expected, these two classes exhibited striking energy differences. Although they are located almost the same distance from the carbon atom of the central methanol molecule, they possess very different intermolecular interaction energies with the central molecule. The H bonding constitutes a dominant factor in the hydration of methanol in dilute aqueous solutions. For the H(2)O...(CH(4)O)(10) cluster, it was shown that the central molecule of water has almost three H bonds with the methanol molecules; this result differs from those in the literature that concluded that the average number of H bonds between a central water molecule and methanol molecules in dilute solutions of water in methanol is about two, with the water molecules being incorporated into the chains of methanol. In contrast, the present predictions revealed that the central water molecule is not incorporated into a chain of methanol molecules, but it can be the center of several (2-3) chains of methanol molecules. The molecules of methanol, which are not H bonded to the central water molecule, have characteristics similar to those of the methane molecules around a central water molecule in the H(2)O...(CH(4))(10) cluster. The ab initio quantum mechanical methods employed in this paper have provided detailed information about the H bonds in the clusters investigated. In particular, they provided full information about two types of H bonds between water and methanol molecules (in which the water or the methanol molecule is the proton donor), including information about their energies and lengths. The average numbers of the two types of H bonds in the CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10) clusters have been calculated. Such information could hardly be obtained with the simulation methods.  相似文献   

15.
Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.  相似文献   

16.
The electronic properties, specifically, the dipole and quadrupole moments and the ionization energies of benzene (Bz) and hydrogen cyanide (HCN), and the respective binding energies, of complexes of Bz(HCN)(1-4), have been studied through MP2 and OVGF calculations. The results are compared with the properties of benzene-water complexes, Bz(H(2)O)(1-4), with the purpose of analyzing the electronic properties of microsolvated benzene, with respect to the strength of the CH/π and OH/π hydrogen-bond (H-bond) interactions. The linear HCN chains have the singular ability to interact with the aromatic ring, preserving the symmetry of the latter. A blue shift of the first vertical ionization energies (IEs) of benzene is observed for the linear Bz(HCN)(1-4) clusters, which increases with the length of the chain. NBO analysis indicates that the increase of the IE with the number of HCN molecules is related to a strengthening of the CH/π H-bond, driven by cooperative effects, increasing the acidity of the hydrogen cyanide H atom involved in the π H-bond. The longer HCN chains (n ≥ 3), however, can bend to form CH/N H-bonds with the Bz H atoms. These cyclic structures are found to be slightly more stable than their linear counterparts. For the nonlinear Bz(HCN)(3-4) and Bz(H(2)O)(2-4) complexes, an increase of the binding energy with the number of solvent molecules and a decrease of the IE of benzene, relative to the values for the Bz(HCN) and Bz(H(2)O) complexes, respectively, are observed. Although a strengthening of the CH/π and OH/π H-bonds, with increasing n, also takes place for the Bz(H(2)O)(2-4) and Bz(HCN)(3-4) nonlinear complexes, Bz proton donor, CH/O, and CH/N interactions are at the origin of this decrease. Thus CH/π and OH/π H-bonds lead to higher IEs of Bz, whereas the weaker CH/N and CH/O H-bond interactions have the opposite effect. The present results emphasize the importance of both aromatic XH/π (X = C, O) and CH/X (X = N, O) interactions for understanding the structure and electronic properties of Bz(HCN)(n) and Bz(H(2)O)(n) complexes.  相似文献   

17.
Infrared spectra of large-sized protonated methanol-water mixed clusters, H(+)(MeOH)(m)(H(2)O)(n) (m=1-4, n=4-22), were measured in the OH stretch region. The free OH stretch bands of the water moiety converged to a single peak due to the three-coordinated sites at the sizes of m+n=21, which is the magic number of the protonated water cluster. This is a spectroscopic signature for the formation of the three-dimensional cage structure in the mixed cluster, and it demonstrates the compatibility of a small number of methanol molecules with water in the hydrogen-bonded cage formation. Density functional theory calculations were carried out to examine the relative stability and structures of selected isomers of the mixed clusters. The calculation results supported the microscopic compatibility of methanol and water in the hydrogen-bonded cage development. The authors also found that in the magic number clusters, the surface protonated sites are energetically favored over their internal counterparts and the excess proton prefers to take the form of H(3)O(+) despite the fact that the proton affinity of methanol is greater than that of water.  相似文献   

18.
Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH(4) (+)(H(2)O)(n=4,6) because otherwise wrong structures could be assigned for the most probable structures. For NH(4) (+)(H(2)O)(6), the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH(4) (+)(H(2)O)(4) and two lowest energy isomers of NH(4) (+)(H(2)O)(6) explains each experimental IR spectrum.  相似文献   

19.
Molecular-dynamics (MD) trajectories and high-level ab initio methods have been used to study the low-energy mechanism for D(2)O-H(+)(H(2)O)(n) reactions. At low collisional energies, MD simulations show that the collisional complexes are long-lived and undergo fast monomolecular isomerization, converting between different isomers within 50-500 ps. Such processes, primarily involving water-molecule shifts along a water chain, require the surmounting of very-low-energy barriers and present sizable non- Rice-Ramsperger-Kassel-Marcus (RRKM) effects, which are interpreted as a lack of randomization of the internal kinetic energy. Interestingly, the rate of water shifts was found to increase upon increasing the size of the cluster. Based on these findings, we propose to incorporate the following steps into the mechanism for low-energy isotopic scrambling these D(2)O-H(+)(H(2)O)(n) reactions: a) formation of the collisional complex [H(+)(H(2)O)(n)D(2)O]* in a vibro-rotational excited state; b) incorporation of the heavy-water molecule in the cluster core as HD(2)O(+) by means of isomerization involving molecular shifts; c) displacement of solvation molecules from the first shell of HD(2)O(+) inducing de-deuteration (shift of a D(+) to a neighbor water molecule); d) reorganization of the clusters and/or expulsion of one of the isotopic variants of water (H(2)O, HDO or D(2)O) from the periphery of the complex.  相似文献   

20.
Ab initio and density functional methods have been used to examine the structures and energetics of the hydrated clusters of methane sulfonic acid (MSA), CH3SO3H.(H2O)n (n = 1-5). For small clusters with one or two water molecules, the most stable clusters have strong cyclic hydrogen bonds between the proton of OH group in MSA and the water molecules. With three or more water molecules, the proton transfer from MSA to water becomes possible, forming ion-pair structures between CH3SO3- and H3O+ moieties. For MSA.(H2O)3, the energy difference between the most stable ion pair and neutral structures are less than 1 kJ/mol, thus coexistence of neutral and ion-pair isomers are expected. For larger clusters with four and five water molecules, the ion-pair isomers are more stable (>10 kJ/mol) than the neutral ones; thus, proton transfer takes place. The ion-pair clusters can have direct hydrogen bond between CH3SO3- and H3O+ or indirect one through water molecule. For MSA.(H2O)5, the energy difference between ion pairs with direct and indirect hydrogen bonds are less than 1 kJ/mol; namely, the charge separation and acid ionization is energetically possible. The calculated IR spectra of stable isomers of MSA.(H2O)n clusters clearly demonstrate the significant red shift of OH stretching of MSA and hydrogen-bonded OH stretching of water molecules as the size of cluster increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号