首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After successful cochlear implantation in one ear, some patients continue to use a hearing aid at the contralateral ear. They report an improved reception of speech, especially in noise, as well as a better perception of music when the hearing aid and cochlear implant are used in this bimodal combination. Some individuals in this bimodal patient group also report the impression of an improved localization ability. Similar experiences are reported by the group of bilateral cochlear implantees. In this study, a survey of 11 bimodally and 4 bilaterally equipped cochlear implant users was carried out to assess localization ability. Individuals in the bimodal implant group were all provided with the same type of hearing aid in the opposite ear, and subjects in the bilateral implant group used cochlear implants of the same manufacturer on each ear. Subjects adjusted the spot of a computer-controlled laser-pointer to the perceived direction of sound incidence in the frontal horizontal plane by rotating a trackball. Two subjects of the bimodal group who had substantial residual hearing showed localization ability in the bimodal configuration, whereas using each single device only the subject with better residual hearing was able to discriminate the side of sound origin. Five other subjects with more pronounced hearing loss displayed an ability for side discrimination through the use of bimodal aids, while four of them were already able to discriminate the side with a single device. Of the bilateral cochlear implant group one subject showed localization accuracy close to that of normal hearing subjects. This subject was also able to discriminate the side of sound origin using the first implanted device alone. The other three bilaterally equipped subjects showed limited localization ability using both devices. Among them one subject demonstrated a side-discrimination ability using only the first implanted device.  相似文献   

2.
梁瑞宇  周健  王青云  奚吉  赵力 《声学学报》2015,40(3):446-454
为提高复杂场景下的听障患者的语言理解度,本文提出一种仿人耳听觉的助听器双耳声源定位算法。算法首先借鉴耳蜗分频特性和听觉掩蔽特性,将声音信号进行多通道分解,并提取人耳敏感频带的信号进行双耳时间差(Interaural Time Difference,ITD)估计;然后基于人耳哈斯效应,提取有效的ITD信息;最后采用头相关模型,将ITD转化为声源方向信息。同时,为了改善混响和多干扰声场景下的声源定位能力,本文提出一种多通道的加权联合策略。仿真和场景测试实验表明,算法的抗干扰性强,定位精度高。而且,在7名受试者的理解度测试中,同现有的助听器增强算法相比,结合定位算法的语音增强算法达到3~5dB的性能改善。  相似文献   

3.
为提高复杂场景下的听障患者的语言理解度,本文提出一种仿人耳听觉的助听器双耳声源定位算法。算法首先借鉴耳蜗分频特性和听觉掩蔽特性,将声音信号进行多通道分解,并提取人耳敏感频带的信号进行双耳时间差(Interaural Time Difference,ITD)估计;然后基于人耳哈斯效应,提取有效的ITD信息;最后采用头相关模型,将ITD转化为声源方向信息。同时,为了改善混响和多干扰声场景下的声源定位能力,本文提出一种多通道的加权联合策略。仿真和场景测试实验表明,算法的抗干扰性强,定位精度高。而且,在7名受试者的理解度测试中,同现有的助听器增强算法相比,结合定位算法的语音增强算法达到3~5 dB的性能改善。  相似文献   

4.
Localization of multiple sound sources with two microphones   总被引:1,自引:0,他引:1  
This paper presents a two-microphone technique for localization of multiple sound sources. Its fundamental structure is adopted from a binaural signal-processing scheme employed in biological systems for the localization of sources using interaural time differences (ITD). The two input signals are transformed to the frequency domain and analyzed for coincidences along left/right-channel delay-line pairs. The coincidence information is enhanced by a nonlinear operation followed by a temporal integration. The azimuths of the sound sources are estimated by integrating the coincidence locations across the broadband of frequencies in speech signals (the "direct" method). Further improvement is achieved by using a novel "stencil" filter pattern recognition procedure. This includes coincidences due to phase delays of greater than 2pi, which are generally regarded as ambiguous information. It is demonstrated that the stencil method can greatly enhance localization of lateral sources over the direct method. Also discussed and analyzed are two limitations involved in both methods, namely missed and artifactual sound sources. Anechoic chamber tests as well as computer simulation experiments showed that the signal-processing system generally worked well in detecting the spatial azimuths of four or six simultaneously competing sound sources.  相似文献   

5.
An efficient robust sound classification algorithm for hearing aids   总被引:1,自引:0,他引:1  
An efficient robust sound classification algorithm based on hidden Markov models is presented. The system would enable a hearing aid to automatically change its behavior for differing listening environments according to the user's preferences. This work attempts to distinguish between three listening environment categories: speech in traffic noise, speech in babble, and clean speech, regardless of the signal-to-noise ratio. The classifier uses only the modulation characteristics of the signal. The classifier ignores the absolute sound pressure level and the absolute spectrum shape, resulting in an algorithm that is robust against irrelevant acoustic variations. The measured classification hit rate was 96.7%-99.5% when the classifier was tested with sounds representing one of the three environment categories included in the classifier. False-alarm rates were 0.2%-1.7% in these tests. The algorithm is robust and efficient and consumes a small amount of instructions and memory. It is fully possible to implement the classifier in a DSP-based hearing instrument.  相似文献   

6.
This paper studies the effect of bilateral hearing aids on directional hearing in the frontal horizontal plane. Localization tests evaluated bilateral hearing aid users using different stimuli and different noise scenarios. Normal hearing subjects were used as a reference. The main research questions raised in this paper are: (i) How do bilateral hearing aid users perform on a localization task, relative to normal hearing subjects? (ii) Do bilateral hearing aids preserve localization cues, and (iii) Is there an influence of state of the art noise reduction algorithms, more in particular an adaptive directional microphone configuration, on localization performance? The hearing aid users were tested without and with their hearing aids, using both a standard omnidirectional microphone configuration and an adaptive directional microphone configuration. The following main conclusions are drawn. (i) Bilateral hearing aid users perform worse than normal hearing subjects in a localization task, although more than one-half of the subjects reach normal hearing performance when tested unaided. For both groups, localization performance drops significantly when acoustical scenarios become more complex. (ii) Bilateral, i.e., independently operating hearing aids do not preserve localization cues. (iii) Overall, adaptive directional noise reduction can have an additional and significant negative impact on localization performance.  相似文献   

7.
A mathematical model for the input-output functions of the hearing aids is presented. The model, basically a sine-series function, can easily yield closed-form expressions for the amplitudes of the harmonic and intermodulation components of the output when the input is formed of multitone large sound pressure levels. The special case of two-tone equal-amplitude incident pressure level is considered in detail. The results show that the third-order intermodulation component is always higher than the third-harmonic component. The results also show that the input-output functions exhibiting peak clipping exhibit the worst harmonic and intermodulation performance for large sound pressure levels. The simple wide-dynamic range compression (WDRC) input-output function exhibits the best harmonic and intermodulation distortion performance under large sound pressure levels. These results are consistent with the previously reported observations and reveal that there is a correlation between intelligibility of high-level speech and the harmonic and intermodulation performance of the hearing aid under large sound pressure levels.  相似文献   

8.
An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.  相似文献   

9.
运动声源声场的可视化是一种重要的运动声源定位的技术手段,利用双目视觉测量技术实现运动声源声场空间的自动测量,自动确定运动声源表面的空间位置,针对声源表面,利用传声器阵列,基于声全息方法实现运动声源声场的重建,建立视频图像与声场的空间映射,并建立视频与声场之间的时序,实现实景视频图像与声场重建结果的融合,可以自动生成声源运动过程的视频。基于该方法所开发了一套试验测量系统,对运动声源的测量试验结果表明,该方法可以有效实现运动声源的视频可视化,使人可以直接从视频中看到声源及其变化过程,使声源的定位和识别变得更加简单。  相似文献   

10.
11.
Headphone rendering of nearby virtual sound sources represents to date an open issue in 3-D audio, due to a number of technical challenges and temporal requirements involved in the measurement of individual Head-Related Transfer Functions (HRTFs). In order to tackle this problem, we propose a filter model of near-field effects based on the Distance Variation Function (Kan et al., 2009). Thanks to its simple structure and low order, the model can be applied to any far-field virtual auditory display to yield a realistic and computationally efficient near-field compensation of spectral and binaural effects. The model is subjectively evaluated in two psychophysical experiments where the relative distance of pairs of virtually rendered sound sources is judged. Results show that even though sound intensity overshadows subtler near-field effects when it is available as a cue for distance, the model is capable of offering relative distance information of near lateral virtual sources when intensity cues are removed. Furthermore, performances of the model in relative distance rendering are compared to those of alternative near-field rendering methods available in the literature.  相似文献   

12.
This paper evaluates noise reduction techniques in bilateral and binaural hearing aids. Adaptive implementations (on a real-time test platform) of the bilateral and binaural speech distortion weighted multichannel Wiener filter (SDW-MWF) and a competing bilateral fixed beamformer are evaluated. As the SDW-MWF relies on a voice activity detector (VAD), a realistic binaural VAD is also included. The test subjects (both normal hearing subjects and hearing aid users) are tested by an adaptive speech reception threshold (SRT) test in different spatial scenarios, including a realistic cafeteria scenario with nonstationary noise. The main conclusions are: (a) The binaural SDW-MWF can further improve the SRT (up to 2 dB) over the improvements achieved by bilateral algorithms, although a significant difference is only achievable if the binaural SDW-MWF uses a perfect VAD. However, in the cafeteria scenario only the binaural SDW-MWF achieves a significant SRT improvement (2.6 dB with perfect VAD, 2.2 dB with real VAD), for the group of hearing aid users. (b) There is no significant degradation when using a real VAD at the input signal-to-noise ratio (SNR) levels where the hearing aid users reach their SRT. (c) The bilateral SDW-MWF achieves no SRT improvements compared to the bilateral fixed beamformer.  相似文献   

13.
梁志强  谢菠荪 《声学学报》2012,37(3):270-278
提出了一种用于实时快速合成多个虚拟声源的头相关传输函数(HRTF)模型。首先对水平面的头相关脉冲响应(HRIR,头相关传输函数的时域形式)数据进行两层小波包分解,然后用一组子带滤波器和综合滤波器建立模型。子带滤波器的系数由HRIR小波系数的零插值得到,综合滤波器的系数由小波函数计算得到。通过使用阈值法对小波系数进行压缩,即可达到简化模型、减小运算量的目的。计算表明,只需要使用30点的小波系数建模,可使模型的重构误差控制在1%的量级。而心理声学实验表明,使用35点的小波系数,模型可得到和原始的HRTF滤波器相当的听觉效果。在同时合成多个虚拟声源的实时计算中,模型的运算量明显小于普通的HRTF滤波器。  相似文献   

14.
Variations in the loop response of hearing aids caused by jaw movements, variations in acoustics outside the ear, and variations of vent size have been identified. Behind The Ear (BTE) and In The Ear Canal (ITEC) hearing aids were considered. The largest variations among the variations of the acoustics outside the ear, except when the hearing aid was partly removed, were found with the ITEC when a telephone set was placed by the ear. The variations of the loop response caused by changes in vent size were compared with the variations of a theoretical model of the feedback path. The theoretical model was also used to compare the feedback of different designs of the vent that gives the same acoustic impedance at low frequencies. The calculated feedback was less with the short vents (12 mm) than the long vents (24 mm).  相似文献   

15.
This paper evaluates the influence of three multimicrophone noise reduction algorithms on the ability to localize sound sources. Two recently developed noise reduction techniques for binaural hearing aids were evaluated, namely, the binaural multichannel Wiener filter (MWF) and the binaural multichannel Wiener filter with partial noise estimate (MWF-N), together with a dual-monaural adaptive directional microphone (ADM), which is a widely used noise reduction approach in commercial hearing aids. The influence of the different algorithms on perceived sound source localization and their noise reduction performance was evaluated. It is shown that noise reduction algorithms can have a large influence on localization and that (a) the ADM only preserves localization in the forward direction over azimuths where limited or no noise reduction is obtained; (b) the MWF preserves localization of the target speech component but may distort localization of the noise component. The latter is dependent on signal-to-noise ratio and masking effects; (c) the MWF-N enables correct localization of both the speech and the noise components; (d) the statistical Wiener filter approach introduces a better combination of sound source localization and noise reduction performance than the ADM approach.  相似文献   

16.
17.
Localization of sound in rooms   总被引:1,自引:0,他引:1  
This paper is concerned with the localization of sources of sounds by human listeners in rooms. It presents the results of source-identification experiments designed to determine whether the ability to localize sound in a room depends upon the room acoustics, and how it depends upon the nature of the source signal. The experiments indicate that the localization of impulsive sounds, with strong attack transients, is independent of the room reverberation time, though it may depend upon the room geometry. For sounds without attack transients, localization improves monotonically with the spectral density of the source. Localization of continuous broadband noise does depend upon room reverberation time, and we propose the concept of direct signal to reverberant noise ratio to study that effect. Source identification experiments reveal certain localization biases, invisible to minimum-audible-angle experiments, and of uncertain origin. Appendices to this paper develop the statistics of the source-identification paradigm and show how they relate to the minimum audible angle.  相似文献   

18.
Speech-reception threshold in noise with one and two hearing aids   总被引:1,自引:0,他引:1  
The binaural free-field speech-reception threshold (SRT) in 70-dBA noise was measured with conversational sentences for 24 hearing-impaired subjects without hearing aids, with a hearing aid left, right, and left plus right, respectively. The sentences were always presented in front of the listener and the interfering noise, with a spectrum equal to the long-term average spectrum of the sentences, was presented either frontally, from the right, or from the left side. For subjects with only moderate hearing loss, PTA (average air-conduction hearing level at 500, 1000, and 2000 Hz) less than 50 dB, the SRT in 70-dBA noise in both ears is determined by the signal-to-noise ratio even if only one hearing aid is used. For larger hearing losses the SRT appears to be partly determined by the absolute threshold. In conditions with a high noise level relative to the absolute threshold, in which case for both ears the SRT is determined by the signal-to-noise ratio, a second hearing aid, just as a monaural hearing aid, generally does not improve the SRT. However, in the case of a high hearing level, or a low noise level, in which a monaural hearing aid is profitable, the use of two hearing aids is even more profitable. In a separate experiment, acoustic head shadow was measured at the entrance of the ear canal and at the microphone location of a hearing aid. It appeared that, for a lateral noise source and speech frontal, the microphone position of behind-the-ear hearing aids has a negative effect on the signal-to-noise ratio of 2-3 dB.  相似文献   

19.
Selected subjects with bilateral cochlear implants (CIs) showed excellent horizontal localization of wide-band sounds in previous studies. The current study investigated localization cues used by two bilateral CI subjects with outstanding localization ability. The first experiment studied localization for sounds of different spectral and temporal composition in the free field. Localization of wide-band noise was unaffected by envelope pulsation, suggesting that envelope-interaural time difference (ITD) cues contributed little. Low-pass noise was not localizable for one subject and localization depended on the cutoff frequency for the other which suggests that ITDs played only a limited role. High-pass noise with slow envelope changes could be localized, in line with contribution of interaural level differences (ILDs). In experiment 2, processors of one subject were raised above the head to void the head shadow. If they were spaced at ear distance, ITDs allowed discrimination of left from right for a pulsed wide-band noise. Good localization was observed with a head-sized cardboard inserted between processors, showing the reliance on ILDs. Experiment 3 investigated localization in virtual space with manipulated ILDs and ITDs. Localization shifted predominantly for offsets in ILDs, even for pulsed high-pass noise. This confirms that envelope ITDs contributed little and that localization with bilateral CIs was dominated by ILDs.  相似文献   

20.
The feedback problems of behind the ear (BTE), in the ear (ITE), and in the ear canal (ITEC) hearing aid categories have been investigated. All possible feedback paths (acoustical via vent, via tubing wall, mechanical, etc.) were converted to a single transfer function from the ear canal to the hearing aid microphone, here called the acoustic feedback equivalent (AFE). The attenuation of the AFE represents the maximum gain that can be used without the hearing aid starting to howl. Magnitude and phase responses of the AFE were identified on ten human subjects and on a Knowles ear manikin (KEMAR). The acoustic feedback via vent and leak between earmould and ear canal dominated the AFE. The transfer function from a reference point under the ear to the position of microphone of the different hearing aid categories was identified and used together with the AFE to calculate the maximum real ear aided gain (REAG) for the hearing aid categories. A model of the AFE, consisting of a fourth-order filter together with a delay, showed good agreement with the measured data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号